
Application Security
Design Antipatterns

Aleksei Meshcheriakov
Security Engineer

Moscow, August 25, 2022

Application Security Design Antipatterns 2

What is an antipattern?

● Commonly-used solution that has
more bad consequence than good
ones

● Another effective solution exists

Application Security Design Antipatterns 3

What are the dangers of
implicit use of antipatterns?

● Vulnerability susceptibility
● Difficult to Retrofit

Antipattern #1:
Excessive Trust

Excessive Trust / Application Security Design Antipatterns 5

Excessive Trust

Trust is based on a weak
factor

Excessive Trust / Application Security Design Antipatterns 6

Excessive Trust

Reasons

● Easy to implement at small
scale

● Integration with legacy
systems

● Compromising one
component gives access to
others

● Hard to investigate full
compromising chain

Consequences

Excessive Trust / Application Security Design Antipatterns 7

Example #1: Internal Network
Trust

Excessive Trust / Application Security Design Antipatterns 8

Example #1: Internal Network
Trust

Excessive Trust / Application Security Design Antipatterns 9

Example #2: Insufficient
Access Control

Excessive Trust / Application Security Design Antipatterns 10

Example #2: Insufficient
Access Control

Excessive Trust / Application Security Design Antipatterns 11

Example #3: UserID in
interservice requests and
batch processing

Excessive Trust / Application Security Design Antipatterns 12

How to detect

● For each connection in the
data flow diagram:
How does one component
authenticate another?

Excessive Trust / Application Security Design Antipatterns 13

How to avoid

● Zero Trust Principle

Antipattern #2:
Unlimited Blast
Radius

Unlimited blast radius / Application Security Design Antipatterns 15

Unlimited blast radius

Lack of strict boundaries
between components

Unlimited blast radius / Application Security Design Antipatterns 16

Unlimited blast radius

Reasons

● Fast growing service
● Monolith's legacy

● Compromising one
component compromise
others

● Hidden dependencies

Consequences

Unlimited blast radius / Application Security Design Antipatterns 17

Example #1: Monolith

Unlimited blast radius / Application Security Design Antipatterns 18

Example #2: Cloud account
overcrowding

Unlimited blast radius / Application Security Design Antipatterns 19

Example #3: Shared secrets

Unlimited blast radius / Application Security Design Antipatterns 20

How to detect

● What happens if some
components are
compromised?

Unlimited blast radius / Application Security Design Antipatterns 21

How to avoid

● Separation & Isolation

Antipattern #3:
Insecure by default

Insecure by default / Application Security Design Antipatterns 23

Insecure by default

The contract offers
non-secure defaults or
makes unclear assumptions
about the calling code. The
consumer has to make
efforts for secure usage.

Insecure by default / Application Security Design Antipatterns 24

Insecure by default

Reasons

● Provide "easy" way to
request/call for all cases via
hidden complexity

● Prone to vulnerabilities

Consequences

Insecure by default / Application Security Design Antipatterns 25

Example #1: Direct Internet
Access

Insecure by default / Application Security Design Antipatterns 26

Example #2: "Allow by default"
policy

 @role(MODERATOR)
 int moderatorHandler() {}
 @role(ADMIN)
 void adminHandler() {}
 // ???
 void anotherHandler() {}

Insecure by default / Application Security Design Antipatterns 27

Example #3: Confusion
naming

dangerouslySetInnerHTML =
{{__html: data}}

el.innerHTML = data;VS

Insecure by default / Application Security Design Antipatterns 28

Example #4: Implicit features

SAXParserFactory factory = SAXParserFactory.newInstance();
// to be compliant, completely disable DOCTYPE declaration:
factory.setFeature("http://apache.org/xml/features/disallow-doctyp
e-decl", true);

Insecure by default / Application Security Design Antipatterns 29

How to detect

● What assumptions do we have
about data, caller code, etc.?

Insecure by default / Application Security Design Antipatterns 30

How to avoid

● Defaults should be safe for use
● Explicit is better than implicit
● Deny by default

Antipattern #4:
Security by obscurity

Security by obscurity / Application Security Design Antipatterns 32

Security by obscurity

Security is based on fact
that attacker doesn't know
implementation details

Security by obscurity / Application Security Design Antipatterns 33

Security by obscurity

Reasons

● Lack of full knowledge
about platform

● Reverse engineering can
find way to bypass security
controls

Consequences

Security by obscurity / Application Security Design Antipatterns 34

Example #1: Client side
controls

Security by obscurity / Application Security Design Antipatterns 35

Example #2: Using WAF
instead of real patching

Security by obscurity / Application Security Design Antipatterns 36

How to detect

● Check trust boundaries

Security by obscurity / Application Security Design Antipatterns 37

How to avoid

● Always implement controls on
server side

Antipattern #5:
Uncontrolled access

Uncontrolled access / Application Security Design Antipatterns 39

Uncontrolled access

Lack of sufficient control
over access to important
data

Uncontrolled access / Application Security Design Antipatterns 40

Uncontrolled access

Reasons

● Lack of control and
inventory

● Inconsistent access control

Consequences

Uncontrolled access / Application Security Design Antipatterns 41

Example #1: Uncontrolled
3d-party access

Uncontrolled access / Application Security Design Antipatterns 42

Example #2: Multiple
Authorization Points

Uncontrolled access / Application Security Design Antipatterns 43

How to detect

● Is there any other way to
access data?

● What should we do to change
the access policy?

Uncontrolled access / Application Security Design Antipatterns 44

How to avoid

● Enforce access control policy in
one place

● Inventory of all access points

Antipattern #6:
Incidental complexity

Incidental complexity / Application Security Design Antipatterns 46

Incidental complexity

Solution that is hard to verify
from security perspective.
Solution can be simplified

Incidental complexity / Application Security Design Antipatterns 47

Incidental complexity

Reasons

● Too customizable ● Vulnerabilities in "hidden"
functionality

Consequences

Incidental complexity / Application Security Design Antipatterns 48

Example #1: Java deserialization

Incidental complexity / Application Security Design Antipatterns 49

How to detect

● Can we simplify the
functionality?

Incidental complexity / Application Security Design Antipatterns 50

How to avoid

● Keep It Simple Stupid (KISS)

Antipattern #7:
Reinventing the
wheel

Reinventing the wheel / Application Security Design Antipatterns 52

Reinventing the wheel

Re-implementing the same
solution over and over again
for different services

Reinventing the wheel / Application Security Design Antipatterns 53

Reinventing the wheel

Reasons

● Lack of customisation for a
centralized solution

● Difficulty of scaling
centralized solutions

● The same problems occur in
different implementations

Consequences

Reinventing the wheel / Application Security Design Antipatterns 54

Example #1: Custom Auth for
each service

Reinventing the wheel / Application Security Design Antipatterns 55

How to detect

● Do we already have a solution
to this problem?

● Do we solve similar problems
over and over again?

● Can custom functionality be
more efficient if it's a
centralized solution?

Reinventing the wheel / Application Security Design Antipatterns 56

How to avoid

● Use a centrally approved
solution

Application Security Design Antipatterns 57

Strategies for working with
antipatterns

● Developer awareness
● Questions during a threat modeling

session

Application Security Design Antipatterns 58

Conclusion

● Antipatterns have a long-term impact
on security

● The implicit use of an antipattern can
create additional security problems

Contacts:
@aameshcheriakov
aameshcheriakov@gmail.com https://github.com/tank1st99/appsec-antipatterns

