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What is an antipattern?

e Commonly-used solution that has
more bad consequence than good
ones

e Another effective solution exists
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What are the dangers of
Implicit use of antipatterns?

e Vulnerability susceptibility
e Difficult to Retrofit
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Antipattern #1:
Excessive Trust




Excessive Trust

Trust Is based on a weak
factor
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Excessive Trust

Reasons

e Easytoimplement at small
scale

e Integration with legacy
systems
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Conseguences

e Compromising one
component gives access to
others

e Hard to investigate full
compromising chain




Example
Trust
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Example #1. Internal Network LONE
Trust

» @
/:ackend # Backfnd #3 Database

1
[}
1
L}
]
1
1
1
1
]
1
1
1
1
]
]
]
1
i >
]
|
]
1
Attacker :l Frontend

]

]

1

]

|}

1

]

]

\

\

]

Vulheroble Backend

Excessive Trust / Application Security Design Antipatterns 8



Example #2: Insufficient
Access Control
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Example #2: Insufficient LONE
Access Control

ey o Allowed actions

Attacker e & Restricted actions

Access checker
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INnterservice requests and
batch processing ,El
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How to detect {ONE
Vs
e For each connection in the /
data flow diagram: ol
How does one component /

authenticate another?
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e Zero Trust Principle
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Antipattern #2:
Unlimited Blast
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Unlimited blast radius

| ack of strict boundaries
between components

Unlimited blast radius / Application Security, Design Antipatterns

g FF
ONE
2022
C
y |
Qe .
“«I’ ¥
B .
24 o=



. . . OFF
Unlimited blast radius {ONE
Reasons Conseguences
e [ast growing service e Compromising one
e Monolith's legacy component compromise

others

e Hidden dependencies
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Example #1: Monolith R

2022

L Business Logic Medid
Management J Conventor

File Background Dynamic
Downloader Tasks Configuration

External S2S UGC
API management

Payments
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Example #2: Cloud account LONE
overcrowding
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Example #3: Shared secrets

OAuth token #1 OAuth token #1

Service A Service B

OAuth token #1

Service C
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e What happens if some Y
components are ¥
compromised? /
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e Separation & Isolation
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Antipattern #3:
Insecure by default




INnsecure by default

The contract offers
non-secure defaults or
makes unclear assumptions
about the calling code. The
consumer has to make
efforts for secure usage.
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INnsecure by default {ONE
Reasons Conseguences
e Provide "easy" way to e Prone to vulnerabilities

request/call for all cases via
hidden complexity

| X
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Example
Access

Internet

Insecure by default / Application Security Design Antipatterns

1: Direct Internet

—
Fronten

———
service

S
Backend service #1

Y

S ——_"
Backend service #2

NO

FF

ONE

2022

25



VFF

Example #2: "Allow by default” LONE
policy

@role(MODERATOR)

int moderatorHandler() {}
@role(ADMIN)

void adminHandler() {}

/[ ??7?

void anotherHandler() {}
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Example
Nnaming

3: Confusion

dangerouslySetInnerHTML =
{{ html: data}}
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Example #4: Implicit features

SAXParserFactory factory = SAXParserFactory.newlInstance()
// to be compliant, completely disable DOCTYPE declaration:

factory.setFeature ("http://apache.org/xml/features/disallow-doctyp
e—-decl", true);

Insecure by default / Application Security Design Antipatterns
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e \What assumptions do we have Y
about data, caller code, etc.? |

r"f‘
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How to avoid

e Defaults should be safe for use
e EXxplicit Is better than implicit
e Deny by default
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Antipattern #4:

Security by obscurity
§




Security by obscurity

Security is based on fact
that attacker doesn't know
Implementation detalls
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Reasons Conseguences
e Lack of full knowledge e Reverse engineering can
about platform find way to bypass security
controls
-
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Example #1: Client side {ONE
controls

Trust data from mobile client
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Example #2: Using WAF
INnstead of real patching
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e Check trust boundaries /
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How to avoid

e Always mplement controls on
server side
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Uncontrolled access




Uncontrolled access

| ack of sufficient control
over access to important
data
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Uncontrolled access {ONE
Reasons Conseguences
e lLack of control and e |nconsistent access control
Inventory
— ‘
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Example #1: Uncontrolled {ONE
3d-party access
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Example #2: Multiple
Authorization Points

R .
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Authorization Component #1
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Authorization Component #2

Authorization Component #3
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How to detect {ONE
Vi
e |sthere any other way to Y
access data? ol
e \What should we do to change /
the access policy? / -
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How to avoid

e Enforce access control policy In
one place
e |Inventory of all access points
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Incidental compIeX|ty




Incidental complexity

Solution that is hard to verity
from security perspective.
Solution can be simplified

Incidental complexity / Application Security [Design Antipatterns
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Incidental complexity {ONE
Reasons Conseguences
e Too customizable e Vulnerabilities in "nidden"

functionality

—.‘ . §
' - 2
Incidental complexity / Application Security Design Antipatterg ’ // .

»
. » a —

47



FF

Example #1. Java deserialization ONE

Java Native Deserialization
ObjectinputStream Serializable Class Application Code Garbage Collector

NO

1. Get bytes
2. Initialize ObjectinputStream
3. Read object from stream

- ois.readObject()

4. Resolve classes of stream
- resolveClass()
5. Deserialize objects

6. Restore object member fields:
- readObject(ObjectinputStream)
- readObjectNoData()

7. Eventually replace restored object
- readResolve()

8. Optionally validate object
- validateObject()

9. Cast deserialized object to
expected type
10. Use deserialized object

11. Call finalize() on GC
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e Can we simplify the /
functionality? g
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How to avoid

o Keep It Simple Stupid (KISS)
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Reinventing the
wheel (d




Reinventing the wheel

Re-implementing the same
solution over and over again
for different services
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Reinventing the wheel {ONE

Reasons

e |ack of customisation for a
centralized solution
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Conseguences

e Difficulty of scaling
centralized solutions

e The same problems occur in
different implementations
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Example #1. Custom Auth for LONE
each service
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How to detect {ONE
Vi
e Do we already have a solution /
to this problem?? ol
e Do we solve similar problems /
over and over again? -
e Can custom functionality be -
more efficient if it's a -

centralized solution?
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e Use a centrally approved

S
solution —

.\ g
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Strategies for working with

antipatterns

e Developer awareness

e Questions during a threat modeling
session
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Conclusion ONE
e Antipatterns have a long-term impact —
on security |
e The implicit use of an antipattern can "

create additional security problems
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Contacts:
‘ @aameshcheriakov
B 2ameshcheriakov@gmail.com
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https://github.com/tanklst99/appsec-antipatterns



