-
20NE

2022

Application Security
Design Antipatterns

Aleksei Meshcheriakov e

Security Engineer

Moscow, August 25, 2022

What is an antipattern?

e Commonly-used solution that has
more bad consequence than good
ones

e Another effective solution exists

/d d o

Application Security Design Antipatterns

2

VFF
{ONE

2022

What are the dangers of
Implicit use of antipatterns?

e Vulnerability susceptibility
e Difficult to Retrofit

Application Security Design Antipatterns

FF
ONE

2022

NGO

Antipattern #1:
Excessive Trust

Excessive Trust

Trust Is based on a weak
factor

Excessive Trust / Application Security Design Antipatterns

VFF

{ONE
ploy]
. n |
y |
E 7
E: -t oy
2 | ,/

Excessive Trust

Reasons

e Easytoimplement at small
scale

e Integration with legacy
systems

Excessive Trust / Application Security Design Antipatterns

VFF
¢ ONE

2022

Conseguences

e Compromising one
component gives access to
others

e Hard to investigate full
compromising chain

Example
Trust

VFF

I: Internal Network ONE

2022

/:ackend # Backend #3 Database

A8

-
0
S

F:r-or\t>

Backend #2

Excessive Trust / Application Security Design Antipatterns 7

VFF

Example #1. Internal Network LONE
Trust

» @
/:ackend # Backfnd #3 Database

1
[}
1
L}
]
1
1
1
1
]
1
1
1
1
]
]
]
1
i >
]
|
]
1
Attacker :l Frontend

]

]

1

]

|}

1

]

]

\

\

]

Vulheroble Backend

Excessive Trust / Application Security Design Antipatterns 8

Example #2: Insufficient
Access Control

88%_

User

g_

Attacker

Excessive Trust / Application Security Design Antipatterns

VFF
{ONE

2022

VFF

Example #2: Insufficient LONE
Access Control

ey o Allowed actions

Attacker e & Restricted actions

Access checker

Excessive Trust / Application Security Design Antipatterns 10

. Q
Example #3: UserlD In {ONE
INnterservice requests and
batch processing ,El

b —

0
How to detect {ONE
Vs
e For each connection in the /
data flow diagram: ol
How does one component /

authenticate another?

Excessive Trust / Application Security Design Antipatterns

VFF

How to avoid N

2022

. . ’
e Zero Trust Principle

A\

Excessive Trust / Application Security Design Antipatterns 13

zONE

2022

Antipattern #2:
Unlimited Blast
Radius (d

/

Unlimited blast radius

| ack of strict boundaries
between components

Unlimited blast radius / Application Security, Design Antipatterns

g FF
ONE
2022
C
y |
Qe .
“«I’ ¥
B .
24 o=

. . . OFF
Unlimited blast radius {ONE
Reasons Conseguences
e [ast growing service e Compromising one
e Monolith's legacy component compromise

others

e Hidden dependencies

{ 12 b
Unlimited blast radius / Application Security Design Antipatterﬁs ’ / . J 16
B

’
. » a ——

Example #1: Monolith R

2022

L Business Logic Medid
Management J Conventor

File Background Dynamic
Downloader Tasks Configuration

External S2S UGC
API management

Payments

Unlimited blast radius / Application Security Design Antipatterns 17

VFF

Example #2: Cloud account LONE
overcrowding

‘ ———————————————————————

--------.
N e e e e o o o Em o o Em o o Em s

Unlimited blast radius / Application Security Design Antipatterns 18

VFF
{ONE

2022

Example #3: Shared secrets

OAuth token #1 OAuth token #1

Service A Service B

OAuth token #1

Service C

Unlimited blast radius / Application Security Design Antipatterns 19

VFF

How to detect X ERE

2022

e What happens if some Y
components are ¥
compromised? /

Unlimited blast radius / Application Security Design Antipatterns - 20

VFF

How to avoid N

2022

° . ’
e Separation & Isolation

A\

Unlimited blast radius / Application Security Design Antipatterns 21

zONE

2022

Antipattern #3:
Insecure by default

INnsecure by default

The contract offers
non-secure defaults or
makes unclear assumptions
about the calling code. The
consumer has to make
efforts for secure usage.

nsecure by default / Application Security Design Antipatterns

VFF
{ONE

2022

VFF
INnsecure by default {ONE
Reasons Conseguences
e Provide "easy" way to e Prone to vulnerabilities

request/call for all cases via
hidden complexity

| X
Insecure by default / Application Security Design Antipatterns’ ’ /,‘ « 3 / 24

Example
Access

Internet

Insecure by default / Application Security Design Antipatterns

1: Direct Internet

—
Fronten

———
service

S
Backend service #1

Y

S ——_"
Backend service #2

NO

FF

ONE

2022

25

VFF

Example #2: "Allow by default” LONE
policy

@role(MODERATOR)

int moderatorHandler() {}
@role(ADMIN)

void adminHandler() {}

/[??7?

void anotherHandler() {}

nsecure by default / Application Security Design Antipatterns 26

Example
Nnaming

3: Confusion

dangerouslySetInnerHTML =
{{ html: data}}

Insecure by default / Application Security Design Antipatterns

el.innerHTML data;

VFF
{ONE

2022

27

Example #4: Implicit features

SAXParserFactory factory = SAXParserFactory.newlInstance()
// to be compliant, completely disable DOCTYPE declaration:

factory.setFeature ("http://apache.org/xml/features/disallow-doctyp
e—-decl", true);

Insecure by default / Application Security Design Antipatterns

VFF
¢ ONE

2022

28

VFF

How to detect X ONE

2022

e \What assumptions do we have Y
about data, caller code, etc.? |

r"f‘

nsecure by default / Application Security Design Antipatterns Z)

How to avoid

e Defaults should be safe for use
e EXxplicit Is better than implicit
e Deny by default

nsecure by default / Application Security Design Antipatterns

—
’

\ T

VFF

LONE

2022

30

gFF
ONE

2022

Antipattern #4:

Security by obscurity
§

Security by obscurity

Security is based on fact
that attacker doesn't know
Implementation detalls

Security by obscurity / Application Security Design Antipatterns

VFF
{ONE

2022

VFF

Security by obscurity LONE

2022

Reasons Conseguences
e Lack of full knowledge e Reverse engineering can
about platform find way to bypass security
controls
-

{ W& LS |
) — f.
Security by obscurity / Application Security Design AnUpatterng ’ /; . J 33
/

. ~
. » a — 1

. . Q
Example #1: Client side {ONE
controls

Trust data from mobile client

Security by obscurity / Application Security Design Antipatterns 34

Example #2: Using WAF
INnstead of real patching

VFF
{ONE

2022

8&% ’Qﬁé

Users

Vulrerable Backend

VFF

How to detect - tone

2022

e Check trust boundaries /

Security by obscurity / Application Security Design Antipatterns - 36

How to avoid

e Always mplement controls on
server side

Security by obscurity / Application Security Design Antipatterns

S

’
—————
P
e

"

VFF
{ONE

2022

37

VFF
{ONE

2022

Antipattern #5: P
Uncontrolled access

Uncontrolled access

| ack of sufficient control
over access to important
data

Uncontrolled access / Application Security Design Antipatterns

VFF
{ONE

2022

VFF
Uncontrolled access {ONE
Reasons Conseguences
e lLack of control and e |nconsistent access control
Inventory
— ‘

{ 8 \
' - p-
Uncontrolled access / Application Security Design Antipattern! v’ // .

’
3 » a ——

40

VFF

Example #1: Uncontrolled {ONE
3d-party access

8 ~
LN
’ N
e 2
o
o

Example #2: Multiple
Authorization Points

R .

8
S
Authorization Component #1

\4
m

Authorization Component #2

Authorization Component #3

Uncontrolled access / Application Security Design Antipatterns

VFF
{ONE

2022

)

0
How to detect {ONE
Vi
e |sthere any other way to Y
access data? ol
e \What should we do to change /
the access policy? / -

Uncontrolled access / Application Security Design Antipatterns

How to avoid

e Enforce access control policy In
one place
e |Inventory of all access points

Uncontrolled access / Application Security Design Antipatterns

—
’

\ T

VFF
{ONE

2022

44

zONE

2022

Antipattern #6:
Incidental compIeX|ty

Incidental complexity

Solution that is hard to verity
from security perspective.
Solution can be simplified

Incidental complexity / Application Security [Design Antipatterns

/117777777777 722,

VFF
{ONE

2022

. . OFF
Incidental complexity {ONE
Reasons Conseguences
e Too customizable e Vulnerabilities in "nidden"

functionality

—.‘ . §
' - 2
Incidental complexity / Application Security Design Antipatterg ’ // .

»
. » a —

47

FF

Example #1. Java deserialization ONE

Java Native Deserialization
ObjectinputStream Serializable Class Application Code Garbage Collector

NO

1. Get bytes
2. Initialize ObjectinputStream
3. Read object from stream

- ois.readObject()

4. Resolve classes of stream
- resolveClass()
5. Deserialize objects

6. Restore object member fields:
- readObject(ObjectinputStream)
- readObjectNoData()

7. Eventually replace restored object
- readResolve()

8. Optionally validate object
- validateObject()

9. Cast deserialized object to
expected type
10. Use deserialized object

11. Call finalize() on GC

Incidental complexity / Application Security Design Antipatterns

VFF

How to detect oNe

2022

e Can we simplify the /
functionality? g

Incidental complexity / Application Security Design Antipatterns - 49

How to avoid

o Keep It Simple Stupid (KISS)

Incidental complexity / Application Security Design Antipatterns

S

’
————

"

VFF
{ONE

2022

50

zONE

2022

Antipattern #7:
Reinventing the
wheel (d

Reinventing the wheel

Re-implementing the same
solution over and over again
for different services

Reinventing the wheel / Application Security Design Antipatterns

VFF
{ONE

2022

Reinventing the wheel {ONE

Reasons

e |ack of customisation for a
centralized solution

Reinventing the wheel / Application Security Design Antipatteﬁs ’

VFF

2022

Conseguences

e Difficulty of scaling
centralized solutions

e The same problems occur in
different implementations

’
d . - : -
' -) .
. « ! 53

Q
Example #1. Custom Auth for LONE
each service

) —) —
Auth A Service A
a —) —
— _— —
Auth B Service B
> >
eeeeeeeee C

Reinventing the wheel / Application Security Design Antipatterns 54

0
How to detect {ONE
Vi
e Do we already have a solution /
to this problem?? ol
e Do we solve similar problems /
over and over again? -
e Can custom functionality be -
more efficient if it's a -

centralized solution?

Reinventing the wheel / Application Security Design Antipatterns

VFF

How to avoid > LONE

2022

e Use a centrally approved

S
solution —

.\ g

Reinventing the wheel / Application Security Design Antipatterns 56

Strategies for working with

antipatterns

e Developer awareness

e Questions during a threat modeling
session

Application Security Design Antipatterns

VFF
{ONE

2022

S

.
" gFF
Conclusion ONE
e Antipatterns have a long-term impact —
on security |
e The implicit use of an antipattern can "

create additional security problems

ri

'./"l

Application Security Design Antipatterns

Contacts:
‘ @aameshcheriakov
B 2ameshcheriakov@gmail.com

‘l“
G
l....
&,
e
DTS

https://github.com/tanklst99/appsec-antipatterns

