
CTO Decurity.io

Upgradeable smart contracts security
Arseniy Reutov

Agenda

● Why proxies?
● Upgradeability patterns
● Proxy storage collision
● Cases: OpenZeppelin, Wormhole, Audius
● Tools & techniques

Why proxies?

Smart contracts are immutable

Cons
● Requires software quality of a Mars rover
● No way to fix bugs without redeploying a contract to a

new address
● A single bug can be a disaster

Pros
● Can’t rug

Immutable contracts examples

Security Ops

● Find out normal parameters (minimum amount of liquidity,

solvency criteria, price within specific range)

● Monitor (e.g. with Forta)

● React (pause the contract, remove liquidity, emergency exit)

● Patch

Patching

● Why can’t we just deploy a new contract?

● Because DeFi is composable

● DeFi is not used only via a frontend, but by other contracts too

● If contract’s address changes you have to change it everywhere

● Some workarounds exist though: registry contracts and ENS

resolution

● But most common practice: proxies

Upgradeability patterns

Upgrading via proxy

● Proxy contract is a wrapper

● Think of a reverse proxy in front of a web server

● The main function of a proxy: forward calls to the implementation

contract

● The main property of a proxy: static address

Upgrading via proxy

EOA tx Proxy Implementation_v0

Implementation_v1

Implementation_v2

https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies

How is it achieved?

💡delegatecall inside a fallback function
 fallback() external payable {
 if (gasleft() <= 2300) {
 revert();
 }

 address target_ = target;
 bytes memory data = msg.data;
 assembly {
 let result := delegatecall(gas(), target_, add(data, 0x20), mload(data), 0, 0)
 let size := returndatasize()
 let ptr := mload(0x40)
 returndatacopy(ptr, 0, size)
 switch result
 case 0 { revert(ptr, size) }
 default { return(ptr, size) }
 }
 }

delegatecall

In EVM there are three ways of calling a function:

1. call - state mutable call, i.e. write

2. staticcall - non mutable call, i.e. read

3. delegatecall - mutable call, but on our own storage

delegatecall vs call

EOA Contract A Contract B
call call

msg.sender = EOA
msg.value = EOA
storage = contract A

msg.sender = contract A
msg.value = contract A
storage = contract B

EOA Contract A Contract B
call delegatecall

msg.sender = EOA
msg.value = EOA
storage = contract A

msg.sender = EOA
msg.value = EOA
storage = contract A

delegatecall vs call

EOA Contract A Contract B
call call

msg.sender = EOA
msg.value = EOA
storage = contract A

msg.sender = contract A
msg.value = contract A
storage = contract B

EOA Contract A Contract B
call delegatecall

msg.sender = EOA
msg.value = EOA
storage = contract A

msg.sender = EOA
msg.value = EOA
storage = contract A

Proxy initialization

● Constructor is automatically called during contract deployment

● But this is no longer possible with proxies

● Because the constructor will change only the implementation

contract’s storage

● Solution – change the constructor to a regular function

● Usually this function is called initialize()

● It has initializer modifier which prevents re-initialization

Proxy patterns

1. Transparent proxy pattern (TPP)

2. Universal upgradeable proxy system (UUPS)

Difference is that TPP proxy contains upgrade logic, while UUPS

off-loads this logic to the implementation contract.

Credit: @OpenZeppelin

Storage layouts

Proxy has to store at least one variable, which is the implementation

address.

There are two storage layouts:

1. Structured storage - usually achieved by inheriting the same

contract by both proxy and implementation

2. Unstructured storage - implementation address is stored in a

pseudo-random slot location, such that an overwrite possibility is

tiny (EIP-1967)

Proxy storage collisions

EVM Storage

● EVM storage is a sequence of 32-byte slots, max length is 2**256

● There is no allocator, contract can read & write everywhere

slot 0 uint256 foo

slot 1 uint256 bar

slot 2 items.length=2

slot 3

slot keccak256(2) items[0]=12

slot keccak256(2)+1 items[1]=42

uint256 foo;
uint256 bar;
uint256[] items;

function allocate() public {
 require(0 == items.length);

 items.length = 2;
 items[0] = 12;
 items[1] = 42;
}

https://mixbytes.io/blog/collisions-solidity-storage-layouts

Structured storage

Proxy Implementation

address _implementation address _owner

… mapping _balances

… uint256 _supply

… …

Structured storage

Proxy Implementation

address _implementation address _owner

… mapping _balances

… uint256 _supply

… …

💥 collision

Unstructured storage

Proxy Implementation

… address _owner

… mapping _balances

… uint256 _supply

… …

…

…

address _implementation

…

Unstructured storage

Proxy Implementation

… address _owner

… mapping _balances

… uint256 _supply

… …

…

…

address _implementation

…

🔀 random slot

EIP-1967

 bytes32 private constant implementationPosition = bytes32(uint256(

 keccak256('eip1967.proxy.implementation')) - 1

));

Storage collisions between implementations

Implementation_v0 Implementation_v1

address _owner address _lastContributor

mapping _balances address _owner

uint256 _supply mapping _balances

… uint256 _supply

Storage collisions between implementations

Implementation_v0 Implementation_v1

address _owner address _lastContributor

mapping _balances address _owner

uint256 _supply mapping _balances

… uint256 _supply

💥 collision

Storage collisions between implementations

Implementation_v0 Implementation_v1

address _owner address _owner

mapping _balances mapping _balances

uint256 _supply uint256 _supply

… address _lastContributor

Storage collisions between implementations

Implementation_v0 Implementation_v1

address _owner address _owner

mapping _balances mapping _balances

uint256 _supply uint256 _supply

… address _lastContributor

⬇ storage extension

 /**

 * @dev This empty reserved space is put in place to allow future versions to add new

 * variables without shifting down storage in the inheritance chain.

 * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

 */

 uint256[49] private __gap;

Cases

OpenZeppelin CVE-2021-41264

● OpenZeppelin 4.1.0 < 4.3.2 had a critical vuln that allowed to brick

the proxy by directly initializing the implementation

● It existed in UUPS contract in the function upgradeToAndCall

which could be called directly

● This function updates the implementation address in the proxy and

atomically executes any migration/initialization function using

DELEGATECALL

● But what if a target contract executes SELFDESTRUCT?

https://forum.openzeppelin.com/t/uupsupgradeable-vulnerability-post-mortem/15680

OpenZeppelin CVE-2021-41264

● If this happens, the DELEGATECALL caller will be destroyed, i.e. the

current active implementation contract

● Normally, we should not bother about it since onlyOwner can call

upgradeToAndCall

● But if implementation contract is initialized directly this check is

bypassed

 modifier onlyProxy() {

 require(address(this) != __self, "Function must be called through delegatecall");

 require(_getImplementation() == __self, "Function must be called through active proxy");

 _;

 }

Wormhole

● Cross-chain bridge with >500M $ TVL

● Was hacked in early February, 325M $ lost (non-proxy issue)

● Another critical vuln similar to the OpenZeppelin’s was submitted

later in February by a whitehat via Immunefi

● Bug bounty – 10,000,000 $ 🤯

https://emojipedia.org/exploding-head/

Wormhole

● Vulnerability in Wormhole was possible due to the custom upgrade

logic similar to the vulnerable OpenZeppelin < 4.3.2

● Wormhole used UUPS-style proxy

● A proxy upgrade was executed only if valid signatures of trusted

addresses (called Guardians) were passed

● Since upgradeTo could be called directly and implementation was

not initialized, it was possible to submit own set of Guardians and

brick the proxy via SELFDESTRUCT in the new implementation

https://medium.com/immunefi/wormhole-uninitialized-proxy-bugfix-review-90250c41a43a

Audius

● Audius - web3 Spotify

● Governance contract was behind a vulnerable custom proxy that

inherited OpenZeppelin’s standard transparent proxy

● As a result Audius was hacked for 6,000,000 $

● Fun fact: contract was audited by OpenZeppelin

Audius

● Custom proxy defined a state var proxyAdmin which occupied the

first slot in the storage

● It overlapped variables initializing and initialized of

OpenZeppelin’s Initializable contract

Credit: @danielvf

Audius

Credit: @danielvf

Tools & techniques

sol2uml

https://github.com/naddison36/sol2uml

slither-check-upgradeability

https://github.com/crytic/slither Credit: @ashekhirin

proxy-storage-collision

https://github.com/Decurity/semgrep-smart-contracts

CTO Decurity.io

Thank you!
Arseniy Reutov

