
Development of UEFI
modules & Debugging
them without NDA
Alx14 & Mars

Moscow, August 25-26, 2022

2

About Us
ALX14

q Independent Researcher

q UEFI, FemtoCells, IOS Researcher

q https://t.me/alx14

q https://twitter.com/alx_pwn

q Independent Investigator

q Penetration testing of WEB-applications,

UEFI Researcher

q https://t.me/lostinffuf

Mars

3

Agenda
q What is it? UEFI

q Type of Solutions

q With Proprietary Blobs

q Full Opensource

q Coreboot

q Libreboot

q TianoCore EDKII

q LinuxBoot, NERF, HEADS?

q JTAG

q Types of Debugging UEFI

q OpenOCD

q Intel System Studio

q Hardware for debug UEFI (Free)

q Intel Galileo with OpenOCD

q Hardware for debug UEFI (NDA)

q Intel JTAGs

q Intel ITP-XDP

q Intro to Closed Chassis

Debugging

q Intel® DCI

q Intel® CCA And USB Debug

q Variants of debugging

q What JTAG on x86 can be

useful for?

q Setup environment for EDKII

q Build EDKII for Quark Platform

q FLASH Update using CH341a

q Connect SPI to CH341a

q Connect UART to Galileo

q Test UEFI Shell

q UEFI DEBUGGER OVERVIEW

q Host & Target Debug Setup

q Debugging UEFI Firmware using

Intel® UDK w/ GDB

What is it? UEFI

5

What is it

q (Unified) Extensible Firmware Interface

q Modern industrial standard for x86 firmware

q Initially developed by Intel as BIOS replacement for IA64

q Performs HW initialization required to start an OS

q Modular and feature rich, uses well defined and known formats

q Mostly written in C, much easier to develop as legacy BIOS

6

Various Options for Intel Platforms

With Proprietary Blobs Full Open source With conf binary components)

q EDK II + Intel® Firmware

Support Package (FSP)

q EDK II + binary modules

q TianoCore EDK II

q Libreboot

q Coreboot

q Uses pre-compiled PEIM/DXE

7

With Proprietary Blobs

Intel® FSP is a binary distribution of Intel’s silicon initialization code. The

resources necessary to implement Intel silicon code are not publicly

available.

Intel’s FSP Strategy

q Distribute binaries of our proprietary silicon code to the public

q Enable this binary to plug into arbitrary firmware designs

(coreboot, TianoCore, etc.)

9

With Proprietary Blobs

TianoCore EDKII
LibreBoot

HEADSLinuxBoot

CoreBoot

NERF

w.a. intel FSP (intel Quark)

Full Opensource

11

Coreboot

q Open source bootable firmware development

project for a variety of architectures. The

philosophy is to do the bare minimum to keep

the equipment running and then hand over

control to another program called the payload.

q Completely transfers

control of the payload,

with no part remaining

resident in the system or

even available for

callback. Uses a very

minimal interface to the

payload and otherwise

imposes no standards on

the ecosystem.

q Intel Management Engine (ME) firmware — we

disable and effectively neutralize this blob by

removing most of its code and setting flags to

disable the ME coprocessor at boot time.

12

Libreboot

q Known briefly as GNU Libreboot - is a

free software project which aims to

replace the proprietary firmware on

most free, lightweight computers and

provides documentation aimed at

ordinary users.

q It is not a direct fork of coreboot;

instead, it is a parallel effort that

works closely together and re-

base from time to time, created

by changing the current code

base in a similar way to the Linux-

Libre project, which does a

cleanup of the Linux kernel of

proprietary components.

q It is installed as a coreboot distribution

without proprietary binary code.

13

TianoCore EDKII

Tianocore EDK II is the reference implementation of UEFI by Intel. EDK is the

abbreviation for EFI Development Kit and is developed by the TianoCore

community. TianoCore EDK II is the defacto standard generic UEFI services

implementation.

* For Intel CPUs need intel FSP

LinuxBoot, NERF, HEADS?
What’s What?

LinuxBoot, NERF, HEADS? What’s What?

LinuxBoot

is the project that replaces

specific firmware

functionality with a Linux

kernel. LinuxBoot is

agnostic to what initramfs

is used with the kernel.

NERF

is LinuxBoot with u-root as

the initramfs. u-root

contains boot policy tools in

Go (e.g. PXE booting,

booting via GRUB config)

among standard busybox-

like utilities rewritten in Go.

HEADS

is a secure runtime that can

be used as the initramfs for

LinuxBoot. Take a look at the

repository on GitHub. See

osresearch.net for more

documentation on HEADS.

JTAG

JTAG

q Joint Test Action Group IEEE 1149.1

q Is an industry standard for verifying designs and testing printed

circuit boards after manufacture. JTAG implements standards for

on-chip instrumentation in electronic design automation (EDA) as a

complementary tool to digital simulation.

q IEEE Standard 1149.1

https://standards.ieee.org/findstds/standard/1149.1-2013.html

Types of Debugging UEFI

19

Types of Debugging UEFI

Over OpenOCD
(Full opensource)

Over NDA tools
aka intel System Studio

Emulation

q Open On-Chip Debugger is open-source

software that interfaces with a hardware

debugger's JTAG port. OpenOCD provides

debugging and in-system programming

for embedded target devices.

q OpenOCD provides the ability to flash

NAND and NOR FLASH memory devices

that are attached to the processor on the

target system.

q Fully proprietary

q Cost 2000$

q Working with special

intel debuggers

q Has NDA

q Opensource

q An EFI DXE binary

emulator based on

Unicorn

q Non - NDA

20

Hardware for debug UEFI (freeware version)

Intel Galileo Gen2 board secondary market price is 20$ open hardware schematics
and open source reference code for UEFI & EDK II (no NDA required)

FTDI or other JTAG board

q I am use Olimex ARM-USB-OCD-H (50$)

q FTDI 2232H for JTAG more chipper 10$

q That's a minimum of $30 to start

q It allows even students to start

working with UEFI

21

Intel Galileo with OpenOCD

Recommended setup for debugging

q Host System

q USB 2.0 male-male A-B cable

q JTAG Probe

q ARM-JTAG-20-10 Adapter

q JTAG Port

q Intel® Galileo Board

q Serial Cable to view boot process

q Power Supply

22

Hardware for debug UEFI (NDA version)

q Signing NDA

q Buying Intel System Studio - 2000$ or 30 day trial

q Buying Compatible Board for Debug (minnow board) 400$

q Buying intel Bluebox – 3000$

§ Intel ITP-XDP on ebay 370-1000$

§ Intel SVT not found on public

q That's a minimum of $2,700 to start

23

Intel variants of JTAGs

Intel In-Target Probe eXtended Debug Port (ITP-XDP)

Intel Direct Connect Interface (DCI aka debug over USB 3.0):
q USB3 Hosting DCI (USB Debug cable)

q BSSB Hosting DCI (Intel SVT Closed Chassis Adapter)

Intel ITP-XDP

25

Intel Direct Connect Interface Overview

26

Intro to Closed Chassis Debugging
JTAG*-based system debug and system trace over low-cost USB* connections Intro to

Closed Chassis Debugging

q Works on production hardware instead of expensive engineering samples

q Debug over a standard USB* connection instead of expensive JTAG probes

q Supports debugging Unified Extensible Firmware Interface (UEFI) platform firmware

q Developers no longer need to wait for a turn at a shared JTAG debugging station

q Design flexibility alleviates the requirement for an accessible hardware JTAG port

Intel® CCA And USB3.0 Debug Cable

Intel SVTCCA can be purchased through the
Intel® Design-In Tools Store

Intel® DCI DbC2/3 A-to-A Debug Cable

28

Debugging and emulation of UEFI

efi_dxe_emulator components

29

efi_dxe_emulator components

q efi_dxe_emulator - based on the

famous Unicorn emulation engine,

which is a fork of QEMU.

q Unfortunately, the Unicorn engine itself is

not sufficient to perform dynamic analysis

of UEFI modules. Since Unicorn focuses only

on emulation of the processor, it has no a

priori knowledge of UEFI-related concepts

such as boot services, runtime services,

protocols or even the PE format. To address

these shortcomings, the efi_dxe_emulator

independently implements some of the

most commonly used UEFI services.

q IQEMU is just a tool, Unicorn engine

is a real framework, and as such it

provides a rich set of APIs that can

be used by a large number of

programming languages through

dedicated bindings.

30

Variants of debugging

31

Variants of debugging with intel UDK

32

What JTAG on x86 can be useful for?

Incident investigation (reading Firmware reading, rootkit detection)

For research proprietary modules and Exploit Dev (Secure Boot, Boot Guard, SMM)

Low-level debugging (UEFI DXE/PEI, drivers, hypervisor)

Performance Analysis

1.

2.

3.

4.

Setup

33

Setup EDKII on Linux

q Ubuntu 16.04

q GIT client

q GCC 4.9 compiler

q ASL compiler

q Python 2.7

q NASM

q GNU Debugger (GDB)

Build EDKII for Quark Platform

apt install -y git nasm iasl build-essential uuid-dev gdb gcc-4.9 g++-4.9
git clone https://github.com/tianocore/edk2.git -b vUDK2018
git clone https://github.com/tianocore/edk2-non-osi.git

export WORKSPACE=$PWD
export PACKAGES_PATH=$WORKSPACE/edk2:$WORKSPACE/edk2-
non-osi/Silicon/Intel
export EDK_TOOLS_PATH=$WORKSPACE/edk2/BaseTools
cd $WORKSPACE/edk2

git submodule update --init

make -C BaseTools

. edksetup.sh BaseTools

build -a IA32 -t GCC49 -p QuarkPlatformPkg/Quark.dsc -D
SOURCE_DEBUG_ENABLE
build -a IA32 -t GCC49 -p QuarkPlatformPkg/QuarkMin.dsc -D
SOURCE_DEBUG_ENABLE

Host & Target Debug Setup

Download application: https:/firmware.intel.com-Develop-Tools

Target source: SourceLevelDebugPkg at TianoCore.org

36

Nuances associated with developing
q incorrectly structured information in the documentation

q Don't forget git submodules update -unit

q Compilers to build for Quark platform should be 4.9

q Don't forget to install all the packages you need to build the firmware

q We did the entire compilation in the distribution Ubuntu 16.04, with Ubuntu 18.04
there are their own quirks and drawbacks, we started everything with the docker
container

q Tip: It is better not to hurry, think about every command you entered

q You can use qemu with ovmf to test it, it is faster and easier (better in some cases)

q If you do not succeed in the build step, look carefully at the errors and try to figure
out what went wrong. Maybe python is the wrong version, maybe nasm is not
installed, maybe the compilers are the wrong version or make; maybe you don't have
openssl missing or basically an error because of dependencies

37

FLASH Update using CH341a

1 2
Be sure to dump your firmware

from Intel Galileo
Flashing new fresh UEFI

flashrom --programmer ch341a_spi -r
galileo-orig.bin

flashrom --programmer ch341a_spi –w QUARK.fd
~/YouWorkDir/Build/Quark/DEBUG_GCC49/FV/QUARK.f

38

Connect SPI to CH341a

Connect

SPI to CH341a UART and JTAG to Galileo

Test UEFI Shell

DEMO

