A N
FF
{ONE

2022

Development of UEFI
modules & Debugging .
them without NDA %

Alx14 & Mars

Moscow, August 25-26, 2022

About Us 3555

2022
ALX14 Mars

U Independent Researcher 0 Independent Investigator

O UEFI, FemtoCells, IOS Researcher O Penetration testing of WEB-applications,

UEFIR h
O https//t.me/alx14 esearcher

O https://t. lostinffuf
O https:;//twitter.com/alx_pwn ps://t.me/lostinffu

Agenda SEF_

2022

d Whatis it? UEFI Q Libreboot 0 OpenOCD

d Type of Solutions d TianoCore EDKII O Intel System Studio

Q With Proprietary Blobs d LinuxBoot, NERF, HEADS? O Hardware for debug UEFI (Free)

O Full Opensource a JTAG Q Intel Galileo with OpenOCD

0 Coreboot d Types of Debugging UEFI 0 Hardware for debug UEFI (NDA)

Q Intel JTAGs d Variants of debugging 0 Connect SPI to CH341a

a Intel ITP-XDP d What JTAG on x86 can be 0 Connect UART to Galileo

d Intro to Closed Chassis useful for? O Test UEFI Shell

Debugging d Setup environment for EDKII O UEFI DEBUGGER OVERVIEW
ad Intel® DCI O Build EDKII for Quark Platform 0O Host & Target Debug Setup
d Intel® CCA And USB Debug O FLASH Update using CH341a 0 Debugging UEFI Firmware using

Intel® UDK w/ GDB

FF
ONE

2022

What is it? UEFI

-

What is it 3Ere

2022

(Unified) Extensible Firmware Interface

Initially developed by Intel as BIOS replacement for |1A64 /
Performs HW initialization required to start an OS

Modular and feature rich, uses well defined and known formats /

O 0O O O O

Mostly written in C, much easier to develop as legacy BIOS

LYl

/ML‘
(O]

Modern industrial standard for x86 firmware p—

. . \
Various Options for Intel Platforms MR
; 2022
With Proprietary Blobs Full Open source With conf binary components)
—
d EDK Il + Intel® Firmware O TianoCore EDK || Q Uses pre-compiled PEIM/DXE
Support Package (FSP) O Libreboot .

Q EDK Il + binary modules 1 Coreboot

With Proprietary Blobs

Intel® FSP is a binary distribution of Intel’s silicon initialization code. The

resources necessary to implement Intel silicon code are not publicly

available.

Intel's FSP Strategy N

O Distribute binaries of our proprietary silicon code to the public

O Enable this binary to plug into arbitrary firmware designs

(coreboot, TianoCore, etc.) -

r"f‘

VFF
{ONE

2022

With Proprietary Blobs , S

2022

Intel Open Platform Firmware Stack

DOpen source . Closed source D Implementation Choice

X

Intel® Firmware Support Package (Intel® FSP) Binary @com

Full Opensource {ERE

2022

2 O

coreboot

e |
CoreBoot Eﬁ :

L .. '
>|< tianocore 5 } !_EI_ IIEI
T LibreBoot égi:t.ajf

&> Coreboot

O Open source bootable firmware development
project for a variety of architectures. The
philosophy is to do the bare minimum to keep
the equipment running and then hand over

control to another program called the payload.

Q Intel Management Engine (ME) firmware — we
disable and effectively neutralize this blob by
removing most of its code and setting flags to

disable the ME coprocessor at boot time.

d Completely transfers

control of the payload,
with no part remaining |
resident in the s&st{é_rﬁ Qr
even available for %

callback. Uses a VER

minimal interface to the's

payload and otherw,tse
|mposes no stand%é on

the ecosystem.

20NE

2022

} Librelboot

d Known briefly as GNU Libreboot - is a
free software project which aims to
replace the proprietary firmware on
most free, lightweight computers and
provides documentation aimed at

ordinary users.

O It is installed as a coreboot distribution

without proprietary binary code.

4 It is not a direct fork of coreboot;

Instead, it is a parallel effort that -

works closely together and re- /

base from time to time, created

by changing the current code

base in a similar way to the
Libre project, which does a
cleanup of the Linux kernel

proprietary comperents.

r"f‘

Linux

of

/

VFF
{ONE

2022

12

>|< TianoCore EDKII SEF_

2022

Tianocore EDK Il is the reference implementation of UEFI by Intel. EDK is the
abbreviation for EFI Development Kit and is developed by the TianoCore
community. TianoCore EDK Il is the defacto standard generic UEFI services

Implementation.

* For Intel CPUs need intel FSP

13

ONE
2022

\
SFF

<
LL
|
3
a%
LL
Z

ﬁ/.

INUxXBoot,

L
What's What

LinuxBoot, NERF, HEADS? What's What?

(B

LinuxBoot

Is the project that replaces
specific firmware
functionality with a Linux
kernel. LinuxBoot is
agnostic to what initramfs

is used with the kernel.

.

|

NERF

Is LinuxBoot with u-root as
the initramfs. u-root
contains boot policy tools in
Go (e.g. PXE booting,
booting via GRUB config)
among standard busybox-

like utilities rewritten in Go.

R
| | |
PN RN

HEADS

IS a secure runtime that can
be used as the initramfs for
LinuxBoot. Take a look at the
repository on GitHub. See
osresearch.net for more

documentation on HEADS.

FF
ONE

2022

JTAG

-

JTAG

20NE

2022

A Joint Test Action Group |IEEE 11491

d Is an industry standard for verifying designs and testing printed

circuit boards after manufacture. JTAG implements standards for

on-chip instrumentation in electronic design automation (EDA) as a

complementary tool to digital simulation.

O IEEE Standard 1149.1 /
https://standards.ieee.org/findstds/standard/1149.1-2013.html| /_ :
Ej.r'n"‘ E S . :
'u.=;|:.- WA ek T A »
=gy -""- : =

L

EI 2 k.

N\
4|

NGO

FF
ONE

2022

Types of Debugging UEFI

Over OpenOCD

(Full opensource)

Over NDA tools

aka intel System Studio

.
VFF
{ONE

2022

Emulation /

d Open On-Chip Debugger is open-source
software that interfaces with a hardware
debugger's JTAG port. OpenOCD provides
debugging and in-system programming
for embedded target devices.

d OpenOCD provides the ability to flash
NAND and NOR FLASH memory devices
that are attached to the processor on the

target system.

Q Fully proprietary

Q Cost 2000%

Q Working with special
intel debuggers

0 Has NDA

r"f‘

Q %ensou rce

A An E)EI DXE binary

zyulator based on
gllelelgy

O Non - NDA —
FE—

=]

Hardware for debug UEFI (freeware version) EFe

2022

Intel Galileo Gen2 board secondary market price is 20$ open hardware schematics
and open source reference code for UEFI & EDK |l (no NDA required)

FTDI or other JTAG board
Q | am use Olimex ARM-USB-OCD-H (509%) A That's a minimum of $30 to start
Q FTDI 2232H for JTAG more chipper 10$ 4 It allows even students to start

~ working with UEFI

20

Intel Galileo with OpenOCD 3EFE

Recommended setup for debugging =
U Host System

0 USB 2.0 male-male A-B cable
Q JTAG Probe

0 ARM-JTAG-20-10 Adapter

D JTAG port » = 3 = Flyswatter:

http://www.tincantools.com/JTAG/
Flyswatter2.html

a Intel® Galileo Board e el W) § 4 = JTAG Adapter

https://www.olimex.com/Produc
ts/ARM/ITAG/ARM-JTAG-20-10/

Q Serial Cable to view boot process

Q Power Supply

Hardware for debug UEFI (NDA version) JEF
/o

O Signing NDA

Q Buying Intel System Studio - 2000$% or 30 day trial /

aQ Buying Compatible Board for Debug (minnow board) 400% | g

A Buying intel Bluebox — 3000% /

= Intel ITP-XDP on ebay 370-1000% —

= |Intel SVT not found on public

O That's a minimum of $2,700 to start

r"f‘

22

. N
Intel variants of JTAGs 2 ONE

2022

Intel In-Target Probe eXtended Debug Port (ITP-XDP)

Intel Direct Connect Interface (DCIl aka debug over USB 3.0):
d USB3 Hosting DCI (USB Debug cable)

d BSSB Hosting DCI (Intel SVT Closed Chassis Adapter)

LYl

‘/*JJ.‘ A -

235

FF
ONE

2022

Intel ITP-XDP

NO

INntel Direct Connect Interface Overview 3555

2022

Option(1)
Hardware required:
Intel® Silicon View Technology Closed
Chassis Adapter (SVTCCA)

Software required:
Intel® System Debugger USB 3.0 Debug cable (type A-to-A)

Option(2)

Intro to Closed Chassis Debugging SEF

2022

JTAG*-based system debug and system trace over low-cost USB* connections Intro to

Closed Chassis Debugging

0 Works on production hardware instead of expensive engineering samples

O Debug over a standard USB* connection instead of expensive JTAG probes

O Supports debugging Unified Extensible Firmware Interface (UEFI) platform firmware
d Developers no longer need to wait for a turn at a shared JTAG debugging station

O Design flexibility alleviates the requirement for an accessible hardware JTAG port

USB cable Intel® Closed Chassis Adapter

2.\ E-e—

Debug & Trace OS boot Debug & Trace from CPU reset -6

Intel® CCA And USB3.0 Debug Cable SFF

/ {ONE
2022

Intel SVTCCA can be purchased through the Intel® DCI DbC2/3 A-to-A Debug Cable
Intel® Design-In Tools Store & 55

Debugging and emulation of UEFI 3555

2022

efi_dxe_emulator
QEMU full-system implements DXE services

emulator handle database, PE
loader, heap, debugger,
etc

28

efi_dxe_emulator components

Q efi_dxe_emulator - based on the

famous Unicorn emulation engine,
which is a fork of QEMU.

Q IQEMU is just a tool, Unicorn engine
Is a real framework, and as such it
provides a rich set of APIs that can
be used by a large number of
programming languages through

dedicated bindings.

O Unfortunately, the Unicorn engine itself is

not sufficient to perform dynamic analysis
of UEFI modules. Since Unicorn focuses only
on emulation of the procescsor; it-has no a
priori knowledge of UEFI—reIa%ed-ébncepté
such as boot services, runtime;.’services, ¢

protocols or even the PE format. To'address

these shortcomings, the efi_dxe_emulator

independently implements seme of the “‘@%

most commonly used UEFI\ser"iCes. -

\
2

FF
ONE

2022

Variants of debugging {ERe

2022

FF
ONE

2022

NO

Variants of debugging with intel UDK

ellR) leve lopment KLt
1 serial port (COM
Jf to TCP port

o mmn

oo

1 5 5P 5 2 A O e 01 | Aa

E.

and - eXDI ‘exd d 6FC1A6-3422-4320-A 41EA A367D Dbg:6.11.0001.4>]

Petw

a0

000 Mack=t
i Eask-

A0
%)

A0
alalalalald

OO

2

o
DOOEG
DO

DO

OOOEC
OO
SO

COOGC
OOEC
COOEC

b
P
[a]5]5] 4

B0 Mask=000
BBERORe Mask=00

-
\4
A
\4
ARG
|4
A
|4
A

0

C

&

=
T
MY
T

GG
]
2
]
a)!
e
2
=
OO
N0
)
)

CEEEE

Debug Timer: FSE Clock = 200000000
Debug Timer: Divisor =
Debug Timer: Frequency = 100006065
Debug Timer: InitialCount 16008600

HOST connection is successful
B = d'\uork\gltsun\Bu1ld\Quark\DEBUG_US2B15386\1932\UeflCDqug\SecCore\Se
0 DIKD Pro d CoreNDEBUGNSecCore. pdb

What JTAG on x86 can be useful for? 3555

AWON

2022

Incident investigation (reading Firmware reading, rootkit detection)

For research proprietary modules and Exploit Dev (Secure Boot, Boot Gua@,\SM M)

Low-level debugging (UEFI DXE/PEI, drivers, hypervisor) —

Performance Analysis

r"f‘

32

FF
ONE

2022

Setup

Setup EDKIIl on Linux SEF_
Build EDKII for Quark Platform 2022
_

apt install -y git nasm iasl build-essential uuid-dev gdb gcc-4.9 g++-4.9
git clone https://github.com/tianocore/edk2.git -b vUDK2018

NASM make -C BaseTools

4 Ubuntu16.04 git clone https://github.com/tianocore/edk2-non-osi.git
Q GIT client export WORKSPACE=$PWD

. export PACKAGES PATH=$WORKSPACE/edk2:$\WWORKSPACE/edk2-
d GCC 49 compiler non-osi/Silicon/Intel

export EDK_TOOLS PATH=$WORKSPACE/edk2/BaseTools

QO ASL compiler cd SWORKSPACE/edk2
Q Python 2.7 git submodule update --init
Q
Q

. edksetup.sh BaseTools

GNU Debugger (GDB)
build -a 1A32 -t GCC49 -p QuarkPlatformPkg/Quark.dsc -D
SOURCE_DEBUG_ENABLE
build -a IA32 -t GCC49 -p QuarkPlatformPkg/QuarkMin.dsc -D
SOURCE_DEBUG_ENABLE

.~

St

Host & Target Debug Setup VFF

ONE

2022

Download application: https:/firmware.intel.com-Develop-Tools

O 5T intel® ULFI Development Kt Debugger Tool | Intel® Architecture Firmware Resource Center - Mozilla Firefox

Usa(Englisn) @ Myt S Q

JOK Debugger Tocd)

Famuly proce

Target source: SourcelevelDebugPkg at Tia noCo-r?.org m;

»
3

Q
Q
Q
Q
Q

(.

Nuances associated with developing SEF_
2022
incorrectly structured information in the documentation g
Don't forget git submodules update -unit
Compilers to build for Quark platform should be 4.9
Don't forget to install all the packages you need to build the firmware W

there are their own quirks and drawbacks, we started everything with thedocker

We did the entire compilation in the distribution Ubuntu 16.04, with Ubbu? 18.04
container

Tip: It is better not to hurry, think about every command you entered , /

You can use gemu with ovmf to test it, it is faster and easier (better in some cases) /

If you do not succeed in the build step, look carefully at the errors and try ta figure
out what went wrong. Maybe python is the wrong version, maybe nasm is not
installed, maybe the compilers are the wrong version or make; maybe you don_t have A
openssl missing or basically an error because of dependencies .. = T L

1._

=

. -
= =
=

Y

&'L“Y‘

FLASH Update using CH341a JEF
Be sure to dump your firmware Flashing new fresh-UEFI

from Intel Galileo .

flashrom --programmer ch34la_spi-r flashrom --programmer ch34la_spi —vv—QUARK.fd
galileo-orig.bin ~/YouWorkDir/BuiId/Quark/DEBUG_GCC49/F\(/QUARK.f

37

Connect SP| to CH341a EFe

Motherboard
ISP Connector
Pin out
Ve ® ® CGND
CcSs ® ® CLK
MISO & &8 MOSI
/\ ® /O3
Mistake Top View
proof pin /CS []|O1 8 |[— vccC
/HOLD or /RESET
DO(10y) | 2 7 (= (104)
WP (10,) 1| 3 6 |[CLK
GND [4 5 1 DI(IOg)

38

FF
ONE

2022

O
O
D)
D)
(D
@
—t

PONLR>
~JORE

ok

stin®

SPI to CH341a UART and JTAG to Galileo

Test UEFI Shell

¥ COMS - Tera Term VT

File Edit Setup Control Window Help
arlyPlatformIinit for PlatType=Bx@8

Quark EDKII Stage 1 Boot Image @ HHHH
Quark EDKII Stage 2 Image BxFFDBBO0O:0BxB01EABRR e
Quark EDKII Payload Image BxFFCOO000:0x00100000 o«

arly Platform Thermal Sensor Init
ARNING: Ioh MAC [B:@, D:28, F:61 NO HW ADDR CONFIGURED?*?
ARNING: Ioh MAC [B:@, D:28, F:71 NO HW ADDR CONFIGURED?*?
2 21515151515 %)
=1 , EnableFastBoot= 1.
Full cfg IF
nstall PPI: 7488D748-FC8C-4EE6-9288—-C4BECA?2A410
RC Entry
RC McFuseStat OxB0000429
RC Fuse : fus_dun_ecc_dis.
RC dram_width @
rank_enables 1
ddr_speed O
flags: SCRAMBLE_EN
density=1 tCL=6 tRAS=37500 tWTR=10000 tRRD-10000 tFAl/=-40000
nstallEf iMemory.

eilnstallPeiMemory MemoryBegin BxCCBBAABA, MemoryLength Bx3140000
muMain Base Address : BxFDFBB@0
ound Microcode ADDR:SIZE BxFFF28574:0x2000
aveConfig.

10 IoApicBase = FECAAAAA IoApicLimit=FECABFFF

10 Rchafiddress = FED1CB00
emorylnit Complete.
arly PCIe controller initialization

latform Erratas After MRC
arlyPlatformConf igGpioExpanders O
i » PPI Notify: F894643D-C449-42D1-8EA8-85BDD8C65BDE
ROGRESS CODE: UB30200803 10
: BaseAddress=8Bx8807CH0AA Length=Bx4000
: BaseAddress=8Bx80078080 Length=0Bx4000

otal temporary memory: 32768 bytes.

temporary memory stack ever used: 16384 hytes.

temporary memory heap used for HobList: 4440 hytes.

temporary memory heap occupied by memory pages: @ hytes.

1d Stack size 16384, New stack size 131072

tack Hob: BasefAddress=BxCCBBABA Length=Bx20000

eap Offset = Bx733A80BA Stack Offset = Bx733BOAAO

PDB = /home/edk2/Build/Quark/DEBUG_GCC4%2/1A32/MdeModulePkyg/Core/Pei/PeiMain/DEBUG/PeiCore.dll

oading PEIM at 8x8000FDDD158 EntryPoint=BxB000FDDD248 PeiCore.efi

einstall PPI: 8C8CES578-8A3D-4F1C-9935-896185C32DD3

einstall PPI: 5473C@7A-3DCB-4DCA-BD6F-1E9689E?7349A

einstall PPI: B?EBABFE-5979-4914-977F-6DEE78C278A6

einstall PPI: 6F8C2B35-FEF4-448D-8256-E11B19D61877

nstall PPI: 3CD652B4-6D33-4DCE-89DB-83DF9766FCCA

nstall PPI: F894643D-C449-42D1-8EA8—-85BDD8C65BDE

otify: PPI Guid: F894643D-C449-42D1-8EA8-85BDD8C6SBDE, Peim notify entry point: FFF64850
latform PEIM Memory Callback

trrSetMemoryAttributeMtrrSettings (CCCF658)> WB: BFEQBBB0
Status = Success

TRR Settings

2R Default Type: APARAARAAAARACHD

FF
ONE

2022

NO

Il COMS - Tera Term V

File Edit Setup Control Window Help

s1:\EFI\exploits> 1s
birectory of: fsl1:\EFI\exploits

05/e4/22 ©3:15a <DIR> 4,09 .

85/04/22 ©3:15a <DIR> 16,384 ..

85/04/22 ©4:00a 88,064 GalileoPwn.efi
1 File(s) 88,064 bytes
2 Dir(s)

s1:\EFI\exploits> GalileoPwn.efi

nable to locate SMM access protocol: @x8000000e

MM access 2 protocol is at Oxe48f550

hvailable SMRAM regions:

* Ox0feb0000.:0xefIIff

uffer for SMM communicate call is allocated at @xfdde@le
nable to locate SMM base protocol: 9x380008e0e

MM communication protocol is at @xf@5ecdc
ommunicate() returned status @x@0e0eeed, data size
bmmHandler() was executed, exploitation success!
Press any key to quit...

w VN <.-.l.ra<a.
— 1

FF
ONE

2022

ON

VFF
{ONE

2022

