
CVE-2021-27223
Denis Sraghkov
 ISP RAS

Moscow, August 26, 2022

2

About me

Ivannikov Institute for System Programming of the RAS.

Take part in creation products for secure development lifecycle.

CVE in ASUS, Intel, Kaspersky Lab products.

3

Agenda

How was find CVE-2021-27233. More CTF, than vulnerability research.

Intro to reverse WDM drivers.
Bypass security mechanism of vulnerability driver.
Prepare specific structures for POC.
Summary.

Vulnerability was fixed in all Kaspersky products with antivirus databases
released in June 2021 and later. Therefore all further information actual only
for Kaspersky AV products before June 2021.

4

Why started view vulnerable driver

Device with name – kimul47.

Device was created with access from user mode for Read, Write permission.

Driver kimul64.drv from old Kaspersky AV products with bases before June 2021
created this device.

5

WDM driver entry point
NTSTATUS

DriverEntry(
struct DRIVER_OBJECT = *DriverObject,
PUNICODE_STRING RegistryPath

)

DriverObject→MajorFunction[IRP_MJ_xxx] = DDDispatchXxx;

6

IRP parse in kimul64 driver
IRP - I/O request packets (IRPs) are kernel mode structures that are used by Windows Driver
Model (WDM) and device drivers to communicate with each other and with the operating
system.

7

Send data to driver - POC

HANDLE dev = CreateFileA("\\\\.\\kimul47", 0xC0000000, 0, NULL, 0x3, 0, NULL);

int code = 0x22C008;
char buf[0x24];
int bufLength = 0x60;
DWORD byteReturn;
DeviceIoControl(dev, code, packet, bufLength, buf, 0x24, &byteReturn, NULL);

8

Maybe fuzzing

1. How - “Yet another way to fuzzing UEFI drivers”;
2. Cut some sections from driver;
3. Build sections with harness;
4. Change specific functions;
5. Start fuzz.

Bad luck! Because vendor encrypted data that was sent
from user application to driver and coverage didn't grow.

9

Decryption buffer – how it looks in driver

String kimul47 in compare constructions looks like something that can
help us find user mode module.

10

Encryption/Decryption bypass - plan

1. Find user mode module that prepare lpInBuffer for DeviceIoControl;
2. Get code that encrypt;
3. Patch this code;
4. Load this code if needed;
5. Call this code.

11

Encryption bypass

Used - find plus grep or yara rules.

Find module - klavemu.kdl

Part of code that was found in user mode module

12

klavemu.kdl after patch

Encryption bypass

1. Prepare stack prologue;
2. Delete some useless part of code(NOP);
3. Take result buffer after encryption.

13

Encryption bypass – POC

HMODULE dll = LoadLibraryA("klavemu.kdl");
typedef char* func();

int pointer = (int)dll + 0x2D3D52;//Offset of code in dll where start encrypt process
func* f = (func*)(pointer);

char* constant = (char*)malloc(0x100);//Potentially not use

__asm {
mov esi, dumpBuffer
mov ecx, listPage
mov eax, constant
mov edx, 0x0
mov ebx, 0xFFFFFFFF

}

buffer = f();

14

What did this driver do

Found some point in driver code that helped understand
semantic of current code:

1. Reinit CR3 register;
2. Reinit LDT, GDT;
3. Get physical address of alloc memory -
ExAllocatePoolWithTag+MmGetPhysicalAddress.

15

What did this driver do

16

What did this driver do

CR3 register initiated with value
*(RBX + 0xC0) and this value was
initiated with physical address of
allocated virtual memory.

This information help
understood other code.

17

What did this driver do

1. CR3 – new value;
2. GDT, LDT - new value;
3. EIP – new value = 0xFFC00180;
4. ESP – new value = 0xFFC112E0.

What next:
Took all XREF on ExAllocatePoolWithTag+MmGetPhysicalAddress functions and looked
all functions near.

One of this function worked with value 0xFFC00000.

18

Prepare linear address in driver kimul64

19

Linear address to physical address

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A:System Programming
Guide, Part 1. Figure 4-8.

20

Prepare linear address in driver kimul64

PDE = (0xFFC00000 >> 0x15) & 0x1FF

PDPT = 0xFFC00000 >> 0x1E

21

Prepare Stack in driver kimul64

ESP 0xFFC112E0
 Offset 0x2E0
 PTE 0x11 (Offset in table 0x11*0x8 = 0x88)
 PDE 0x1FE
 PDPTE 0x3

22

Prepare Segments

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A:System Programming
Guide, Part 1. Figure 3-6, Figure 3-8.

23

Prepare Segments in driver kimul64

Segment register = 0xB0
RPL – 0x0
TI – 0x0 (GDT)

Segment
descriptor=0x00CF9A000000FFFF
Base address – 0x00000000
Limit – 0xFFFFFF
Type - b1010 Code Execute/Read

 b0010 Data Read/Write
Descriptor Type – 0x1 (Code or Data)
DPL – 0x00

24

Prepare Segments

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A:System Programming
Guide, Part 1. Figure 3-3.

25

Logical address to linear address

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A:System Programming
Guide, Part 1. Figure 3-5.

26

Transfer control to new VA

27

Transfer execution to control address

(__int32)(dumpBuffer + 0x4) = 0x00400300; //Virtual address of
code to which control will be transferred

__int32 A = (__int32)malloc(0x1000); //Create structure with pages for
code that wan't execute
__int32 B = (__int32)_aligned_malloc(0x440, 0x1000);
memset((void*)B, 0x90, 0x440);
(__int32)(A + ((0x400000 >> 12) & 0x3ff) * 8) = B + 0x440;
FILE* shellcode = fopen("shellcode", "r");

fread((void*)B, 1, 0x7, shellcode);

28

Who was debugged POC

WinDbg + Virtualbox in debug mode

http://www.virtualbox.org/manual/ch12.html#ts_debugger

29

Why execution not in kernel context

Segment_Selector = Segment_Selector & 0x3 - RPL set to Ring 3

30

Description of CVE from vendor

Description

Kaspersky has fixed a security issue CVE-2021-27223 in one of its modules, which was
incorporated in Kaspersky Anti-Virus products for home and Kaspersky Endpoint
Security. An authenticated attacker with user rights could cause Windows crash by
running a specially crafted application.

CVSS = 5.2

https://support.kaspersky.com/general/vulnerability.aspx?el=12430#310322_1

https://support.kaspersky.com/general/vulnerability.aspx?el=12430#310322_1

31

Mitigation

1. Encryption and authentication doesn't work.

2. Access control from user mode to kernel mode.

3. Sanitization data from user mode to kernel mode:
- address;
- data.

4. Delete vulnerability module. Vendor used this method for
mitigation because legacy functionality of this module was not
longer used.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

