
А small mistake: 
a story of 5G 
router research
Georgii Kiguradze
Reverse Engineer, Positive Technologies

Moscow, August 26, 2022



2

Disclaimer

The vendor has been notified of all 
security issues reported in this presentation.



3

About me

Reverse Engineer at 
Positive Technologies

C4T BuT S4D CTF 
team member



4

In this presentation

▪ Device info

▪ Black box analysis

▪ Finding first bug and getting firmware

▪ Reversing firmware

▪ More bugs

▪ Exploitation

▪ Vendor response

▪ Conclusions



5

Device info

Modem:
Qualcomm Snapdragon 
X55 5G modem

CPU: ARM Cortex-A7 
up to 1.5 GHz

OS: Linux 

Updates: 
not publicly available, 
vendor provides 
them in encrypted 
form via FOTA.



6

Device info



7

Device info



8

Device info



9

Starting research

• No firmware

• Not allowed to 
open the device 
and desolder
the flash drive

• You are a reverse 
engineer

• How do you 
find anything?



10

Black box analysis

• Scan open ports • Get banners • Get versions of services



11

Web app analysis

• We are looking for 
inputs that are 
potentially substituted 
into OS commands

• Loading/downloading 
files 

• Updating/downgrading 
firmware

• Enabling additional 
services

• Changing config files



12

Typical web request

Requests are 
encrypted on 
the frontend

Can’t control 
values directly



13

Getting logs

/api/fileDownload//oatptmp/log.tar



14

Hmm…



15

Yay, we’re reading a file!



16

Yay, we’re reading a file!

Without authorization…



17

Results so far

We can read files 
without authorization

But we don’t know the 
names of files

1.



18

Getting logs

• system_photo.txt — ps aux
• network_photo.txt — netstat
• bootup_kmgs.log — boot log

• RunTimeTemp.log —
global log of all apps



19

RunTimeTemp.log

Check new version request



20

Getting firmware update directly

down_url‚— firmware

description — HTML with release notes



21

Analyzing the update file

Update file is encrypted



22

Results so far

We can read files 
without authorization1.

We downloaded 
firmware

But we don’t know how 
to decrypt the firmware

2.



23

Back to the logs

[<time>][<binary name>][<msg-type>] [<Source-name>] [<func>]: 
<msg>



24

upg_mng – analysis

• Do some checks
• Decrypt firmware
• Decompress firmware



25

upg_mng – firmware decryption

Key + IV hardcoded in binary



26

Unencrypted firmware

Tar archive with 
Linux system/ — rootfs



27

Results so far

We can read 
files without 
authorization

1.
We downloaded 
(and decrypted) 
firmware

2.
We have all 
binaries and 
data files

3.



28

Low hanging fruits

This feature does not 
show in the web 
application, but we can 
download logs via FTP

What could 
possibly go wrong?



29

Low hanging fruits



30

Exploitation



31

Exploitation

r = Object({"reqType":"ftp", "ftpPath":"http://192.168.99.142", 

"ftpUsername":"1';/usr/bin/nc -lp 1337 -e /bin/bash &'", 

"ftpPassword":"1"})



32

Sensitive data

• Different configs are 
stored on the device, 
they are encrypted with 
AES-256 OFB with a 
hard-coded key in the 
binary

• SAMBA config with a 
plain-text password, 
user config (password 
hashed), SMS archive.



33

Final results

Bug in log 
download1.
Logs contain binary names 
and link to firmware update2.
We can download update 
binary and decrypt firmware3.

Command injection in 
the log download method 
(coded in firmware but 
not used in the web app 
for FTP download)

4.

Log download bug 
lets us get any config 
file and decrypt it 
(and read SMS)

5.



34

Why did all this happen?

Ooops….



35

Interaction with the vendor

No danger? Okay…



36

Interaction with the vendor



37

Conclusions

BDU:2021-06036, 
BDU:2021-06037, 
BDU:2021-06038

One small mistake can 
lead to a complete 
collapse of security

Manufacturers still allow 
command injection



Thank you!




