
Using tokens for secrets search or
imitating SAST
Nikolai KHECHUMOV
Senior Security Engineer, Avito

Moscow, August 25, 2022

2

Meta (not that one) and Context

Nikolai KHECHUMOV

ntoskrnl 1900 Microservices

180 Teams

6 Languages

5 K8S Clusters

Avito
Senior Security Engineer @ Product Security Team

khechumov

3

Agenda

• Few words about code security pipeline at Avito

• Problems of finding secrets in code

• Reasonable ways to solve

• Entire approach and results

4

Avito’s
Code Security Pipeline

5

Avito’s Code Security Pipeline
General Architecture

• Works in parallel with CI

• Triggered by VCS via hooks (pre-receive, post-receive, pr-open)

• Scans every push with a bunch of scanners, eq:
• Language-dependent scanner (CodeQL, semgrep, RIPS, etc.)
• Vulnerable / Malware Dependencies scanner
• Secrets scanner (we are here)

• Extencible, no vendor-lock

• Tracks every finding from any scanner across git states and branches
• Single finding format and shared deduplication strategies

• State-machine detects specific lifecycle events and runs reactions

• Integrated with in-house SOAR (without defectdojo J)

• Topic for a separate talk

Eq. 0

Eq. 1

6

Avito’s Code Security Pipeline
Secrets Management

• Hashicorp Vault with self-service UI for devs – place a secret for your
service yourself

• People tend to commit secrets (intentionally or accidentally) no matter
how you teach them

• We scan every commit of new code, every new Docker image in a private
registry

7

Avito’s Code Security Pipeline
Secrets Management | Processes

• Scanning on pre-receive stage prevents new
secrets reaching origin (high-confidence
findings)

• Secrets we miss during pre-receive stage are
detected afterwards and resolved via general
vuln management processes

• Credentials we are able to revoke – we revoke
asap

• Tasks for Devs about changing compromised
secrets are ranked higher

• Any old credentials are blocklisted, cannot be
used as new credentials somewhere else

example of push being blocking during pre-receive

8

Problems of Finding
Secrets in Code

9

So, the code

REGEX

ENTROPY!

clear false positive with entropy

typed secrets: detectable with regexes

untyped secret: entropy to the rescue

not enough data for entropy

names of methods has big entropy

REGEX

10

More ways to detect. And a
showstopper

VIA INTERNAL

PASSWORDS

BASE (CREEPY)

By Plaintext

Secret to match:
GWHhIzyNe0

Regex: GWHhIzyNe0

- How to ignore keywords of a language?
- How to understand variables: names and values?
- How to take into account all cases of string init? (eq. single/double/triple quotes)

General questions to answer and problems to solve

Vault

AD

By hashed value

Secret to match:
386268c64ea12321f321cae069cf9a20489bc960

What to hash in the code?!

11

Should we buy a SAST?
Pro

• Excellent quality of language understanding thanks to Abstract Syntax Tree

Contra

• Low Extensibility: we need a separate SAST for every language we face

• Overkill, we need only AST

• We have to hack the internal machinery (give me a raw AST for the file)

• Does not work well with if we need to analyze a separate file without dependencies

• Expensive / some langs are not supported

12

Any SAST builders?

Pro

• Excellent quality of language understanding thanks to AST

• No need to hack SAST’s machinery to get raw AST

• AST is pretty standardized

Contra

• Lack of libraries for Python (it’s about building AST WITH Python for any other language)

• Lack of support

• Low Extensibility: we need a separate library for every language

Maybe there are libraries able to build an AST for us?

13

Use native parser of a lang?!
Let’s hack interpreters and compilers to intercept AST!
Let’s also keep all runtimes and compilers installed

14

LSP!

What is it?

• Protocol used between an editor or IDE and a language server that provides language features like
auto complete, go to definition, find all references etc.

Language Server Protocol

• A Language Server is meant to provide the
language-specific smarts and communicate
with development tools over a protocol that
enables inter-process communication.

• The idea behind the Language Server
Protocol (LSP) is to standardize the protocol
for how such servers and development tools
communicate.

15

LSP!
Language Server Protocol

16

LSP! No L

Pro

• Solves all our problems

• No need to hack anything to reach our needs

• Standard protocol, unification

Language Server Protocol is still for future use

Contra

• Language servers has lack of support for Semantic Tokens
(python-lsp)

• Some language servers cannot be used standalone
(Pylance)

• Performance issues (gopls)

• Low Extensibility: we need to run N language servers

17

Quick reminder about the problem
we’re trying to solve J

We want to “understand” semantics of
code to search secrets with maximum
efficiency.

18

Understanding SAST

19

How SAST works (as well as compilers)
Let’s borrow the basics for our needs

Lexical
Analyzer

(“Lexer”)

Source Chars Tokens Semantic
Analyzer

(“Parser”)

Abstract
Syntax
Tree

def main(arg: str):
a = 3
b = 'hello'
return f'{a}{b}'

def meta.function

main entity.name.function

(punctuation.begin

arg variable.parameter

: punctuation.separator

str class.typeHint

) punctuation.end

: punctuation.function.begin

a variable.declaration

= keyword.operator.assignment

3 constant.numeric.dec

b variable.declaration

= keyword.operator.assignment

'hello' string.quoted.single

return keyword.control.flow

f'{a}{b}' string.quoted.single

20

Stage 1: Lexing
Did you mention on the previous slide?

def main(arg: str):
a = 3
b = 'hello'
return f'{a}{b}'

21

Stage 1: Lexing
Did you mention on the previous slide?

def main(arg: str):
a = 3
b = 'hello'
return f'{a}{b}'

22

Stage 1: Lexing
Syntax Highlighting! How does it work?!

def main(arg: str):
a = 3
b = 'hello'
return f'{a}{b}'

No need to understand. It’s FREE and FAST (Still regexes though)

23

Stage 1: Lexing via Syntax Highlighting

Knows how to highlight – read “tokenize” – 536 langs and formats

Open source and free

Able to output tokens raw!

def main(arg: str):
a = 3
b = 'hello'
return f'{a}{b}'

24

Stage 1: Lexing via Syntax Highlighting
What do we get with it?

Benefits

• Tokenization with understanding of language

• Types of tokens – just ignore useless ones

Still unresolved issues

• No info about boundaries of tokens – you do it

• Variables are still not detected – task for stage 2

25

Stage 2: True AST for variable detection or.. ?

• We need to create rules for variable detection
without recreating regex engine

• Research showed the following:
• Token type pattern matters – place for regex
• Token values are auxiliary

Let’s convert Token’s type to a single char
and concat, eq.:

Token.Keyword = ‘k’
Token.Text = ‘t’
Token.Name.Function = ‘f’

…

How do we match this
‘token type pattern’?

Further research

26

Stage 2: True AST for variable detection or.. ?
Further research

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Token Type k t n p n p t b p p t t n t o t i t t t n t o t s s s t …

Token Value def main (arg : str) : \n a = 3 \n b = ‘ hello ‘ \n …

27

Stage 2: True AST for variable detection or.. ?
Further research

• Rule
• StreamPattern: (n)t*(o|p)t*(s)(s)(s)t

• MatchRules:

• 2: “=“

• 3: [‘”’, ‘\’]

• 5: [‘”’, ‘\’]

• MatchSemantics:

• 1: name

• 4: value

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Token Type k t n p n p t b p p t t n t o t i t t t n t o t s s s t …

Token Value def main (arg : str) : \n a = 3 \n b = ‘ hello ‘ \n …

28

Stage 2: True AST for variable detection or.. ?
Further research

• Rule
• StreamPattern: (n)t*(o|p)t*(s)(s)(s)t

• MatchRules:

• 2: “=“

• 3: [‘”’, ‘\’]

• 5: [‘”’, ‘\’]

• MatchSemantics:

• 1: name

• 4: value

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Token Type k t n p n p t b p p t t n t o t i t t t n t o t s s s t …

Token Value def main (arg : str) : \n a = 3 \n b = ‘ hello ‘ \n …

var: b

29

Outcomes

Enabler
for deeper analysis
(eq. “suspicious variable
names + high entropy

variable value”)

+40%
performance boost
Lower amount of analyzed

strings /entropy
calculations / etc.

+30%
more findings

on Avito’s codebase

Limitations
• Plaintext files without any semantics are obviously not covered

• Var Detection Rules (VDRs) are language-specific (simpler than building a SAST though)

• Rules does not guarantee full coverage, deep testing required

• Hard (but possible) to detect when secrets concat from innocent parts

30

Full Picture
Architecture of the service

- Full content
- Line start-end positions
- Line content caches
- Tokens

FileAnalyzerFile

Tokenizers

SearchEngines

Rules

File Model
FullContentTokenizer
PerWordTokenizer
LexerTokenizer with VDRs

Tokenizer
RegexEngine
EntropyEngine
HashedValueEngine

SearchEngine

Findings

Inspects a tokenSplits file into tokens

31

Full Picture

Later this year
Open Source?

Stay Secure!

ntoskrnl

khechumov

Thanks

