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Agenda

• Few words about code security pipeline at Avito

• Problems of finding secrets in code

• Reasonable ways to solve

• Entire approach and results
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Avito’s
Code Security Pipeline
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Avito’s Code Security Pipeline
General Architecture

• Works in parallel with CI

• Triggered by VCS via hooks (pre-receive, post-receive, pr-open)

• Scans every push with a bunch of scanners, eq:
• Language-dependent scanner (CodeQL, semgrep, RIPS, etc.)
• Vulnerable / Malware Dependencies scanner
• Secrets scanner (we are here)

• Extencible, no vendor-lock

• Tracks every finding from any scanner across git states and branches
• Single finding format and shared deduplication strategies

• State-machine detects specific lifecycle events and runs reactions

• Integrated with in-house SOAR (without defectdojo J)

• Topic for a separate talk

Eq. 0

Eq. 1
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Avito’s Code Security Pipeline
Secrets Management

• Hashicorp Vault with self-service UI for devs – place a secret for your 
service yourself

• People tend to commit secrets (intentionally or accidentally) no matter 
how you teach them

• We scan every commit of new code, every new Docker image in a private 
registry
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Avito’s Code Security Pipeline
Secrets Management | Processes

• Scanning on pre-receive stage prevents new 
secrets reaching origin (high-confidence 
findings)

• Secrets we miss during pre-receive stage are
detected afterwards and resolved via general 
vuln management processes

• Credentials we are able to revoke – we revoke 
asap

• Tasks for Devs about changing compromised 
secrets are ranked higher

• Any old credentials are blocklisted, cannot be 
used as new credentials somewhere else

example of push being blocking during pre-receive
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Problems of Finding
Secrets in Code
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So, the code

REGEX

ENTROPY!

clear false positive with entropy

typed secrets: detectable with regexes

untyped secret: entropy to the rescue

not enough data for entropy

names of methods has big entropy

REGEX
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More ways to detect. And a 
showstopper

VIA INTERNAL 

PASSWORDS 

BASE (CREEPY)

By Plaintext

Secret to match:
GWHhIzyNe0 

Regex: GWHhIzyNe0

- How to ignore keywords of a language?
- How to understand variables: names and values?
- How to take into account all cases of string init? (eq. single/double/triple quotes)

General questions to answer and problems to solve

Vault

AD

By hashed value

Secret to match:
386268c64ea12321f321cae069cf9a20489bc960

What to hash in the code?!



11

Should we buy a SAST?
Pro

• Excellent quality of language understanding thanks to Abstract Syntax Tree

Contra

• Low Extensibility: we need a separate SAST for every language we face 

• Overkill, we need only AST

• We have to hack the internal machinery (give me a raw AST for the file)

• Does not work well with if we need to analyze a separate file without dependencies

• Expensive / some langs are not supported
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Any SAST builders?

Pro

• Excellent quality of language understanding thanks to AST

• No need to hack SAST’s machinery to get raw AST

• AST is pretty standardized

Contra

• Lack of libraries for Python (it’s about building AST WITH Python for any other language)

• Lack of support

• Low Extensibility: we need a separate library for every language

Maybe there are libraries able to build an AST for us? 
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Use native parser of a lang?!
Let’s hack interpreters and compilers to intercept AST!
Let’s also keep all runtimes and compilers installed
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LSP! 

What is it?

• Protocol used between an editor or IDE and a language server that provides language features like 
auto complete, go to definition, find all references etc.

Language Server Protocol

• A Language Server is meant to provide the 
language-specific smarts and communicate 
with development tools over a protocol that 
enables inter-process communication.

• The idea behind the Language Server 
Protocol (LSP) is to standardize the protocol 
for how such servers and development tools 
communicate. 
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LSP! 
Language Server Protocol



16

LSP! No L

Pro

• Solves all our problems

• No need to hack anything to reach our needs

• Standard protocol, unification

Language Server Protocol is still for future use

Contra

• Language servers has lack of support for Semantic Tokens 
(python-lsp)

• Some language servers cannot be used standalone 
(Pylance)

• Performance issues (gopls)

• Low Extensibility: we need to run N language servers
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Quick reminder about the problem
we’re trying to solve J

We want to “understand” semantics of 
code to search secrets with maximum 
efficiency.
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Understanding SAST
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How SAST works (as well as compilers)
Let’s borrow the basics for our needs

Lexical 
Analyzer

(“Lexer”)

Source Chars Tokens Semantic 
Analyzer

(“Parser”)

Abstract
Syntax
Tree

def main(arg: str):
a = 3 
b = 'hello'
return f'{a}{b}'

def meta.function

main entity.name.function

( punctuation.begin

arg variable.parameter

: punctuation.separator

str class.typeHint

) punctuation.end

: punctuation.function.begin

a variable.declaration

= keyword.operator.assignment

3 constant.numeric.dec

b variable.declaration

= keyword.operator.assignment

'hello' string.quoted.single

return keyword.control.flow

f'{a}{b}' string.quoted.single
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Stage 1: Lexing
Did you mention on the previous slide?

def main(arg: str):
a = 3 
b = 'hello'
return f'{a}{b}'
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Stage 1: Lexing
Did you mention on the previous slide?

def main(arg: str):
a = 3
b = 'hello'
return f'{a}{b}'
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Stage 1: Lexing
Syntax Highlighting! How does it work?!

def main(arg: str):
a = 3
b = 'hello'
return f'{a}{b}'

No need to understand. It’s FREE and FAST (Still regexes though)
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Stage 1: Lexing via Syntax Highlighting

Knows how to highlight – read “tokenize” – 536 langs and formats

Open source and free

Able to output tokens raw!

def main(arg: str):
a = 3 
b = 'hello'
return f'{a}{b}'
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Stage 1: Lexing via Syntax Highlighting
What do we get with it?

Benefits

• Tokenization with understanding of language

• Types of tokens – just ignore useless ones

Still unresolved issues

• No info about boundaries of tokens – you do it

• Variables are still not detected – task for stage 2
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Stage 2: True AST for variable detection or.. ?

• We need to create rules for variable detection 
without recreating regex engine

• Research showed the following:
• Token type pattern matters – place for regex
• Token values are auxiliary

Let’s convert Token’s type to a single char 
and concat, eq.:

Token.Keyword = ‘k’
Token.Text = ‘t’
Token.Name.Function = ‘f’

…

How do we match this
‘token type pattern’?

Further research
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Stage 2: True AST for variable detection or.. ?
Further research

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Token Type k t n p n p t b p p t t n t o t i t t t n t o t s s s t …

Token Value def main ( arg : str ) : \n a = 3 \n b = ‘ hello ‘ \n …
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Stage 2: True AST for variable detection or.. ?
Further research

• Rule
• StreamPattern: (n)t*(o|p)t*(s)(s)(s)t

• MatchRules:

• 2: “=“

• 3: [‘”’, ‘\’]

• 5: [‘”’, ‘\’]

• MatchSemantics:

• 1: name

• 4: value

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Token Type k t n p n p t b p p t t n t o t i t t t n t o t s s s t …

Token Value def main ( arg : str ) : \n a = 3 \n b = ‘ hello ‘ \n …
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Stage 2: True AST for variable detection or.. ?
Further research

• Rule
• StreamPattern: (n)t*(o|p)t*(s)(s)(s)t

• MatchRules:

• 2: “=“

• 3: [‘”’, ‘\’]

• 5: [‘”’, ‘\’]

• MatchSemantics:

• 1: name

• 4: value

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Token Type k t n p n p t b p p t t n t o t i t t t n t o t s s s t …

Token Value def main ( arg : str ) : \n a = 3 \n b = ‘ hello ‘ \n …

var: b
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Outcomes

Enabler
for deeper analysis
(eq. “suspicious variable 
names + high entropy 

variable value”)

+40%
performance boost
Lower amount of analyzed 

strings /entropy 
calculations / etc.

+30%
more findings

on Avito’s codebase

Limitations
• Plaintext files without any semantics are obviously not covered

• Var Detection Rules (VDRs) are language-specific (simpler than building a SAST though)

• Rules does not guarantee full coverage, deep testing required

• Hard (but possible) to detect when secrets concat from innocent parts
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Full Picture
Architecture of the service

- Full content
- Line start-end positions
- Line content caches
- Tokens 

FileAnalyzerFile

Tokenizers

SearchEngines

Rules

File Model
FullContentTokenizer
PerWordTokenizer
LexerTokenizer with VDRs

Tokenizer
RegexEngine
EntropyEngine
HashedValueEngine

SearchEngine

Findings

Inspects a tokenSplits file into tokens
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Full Picture

Later this year
Open Source?
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